43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PCR amplification of repetitive DNA: a limitation to genome editing technologies and many other applications

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Designer transcription-activator like effectors (TALEs) is a promising technology and made it possible to edit genomes with higher specificity. Such specific engineering and gene regulation technologies are also being developed using RNA-binding proteins like PUFs and PPRs. The main feature of TALEs, PUFs and PPRs is their repetitive DNA/RNA-binding domains which have single nucleotide binding specificity. Available kits today allow researchers to assemble these repetitive domains in any combination they desire when generating TALEs for gene targeting and editing. However, PCR amplifications of such repetitive DNAs are highly problematic as these mostly fail, generating undesired artifact products or deletions. Here we describe the molecular mechanisms leading to these artifacts. We tested our models also in plasmid templates containing one copy versus two copies of GFP-coding sequence arranged as either direct or inverted repeats. Some limited solutions in amplifying repetitive DNA regions are described.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting

          TALENs are important new tools for genome engineering. Fusions of transcription activator-like (TAL) effectors of plant pathogenic Xanthomonas spp. to the FokI nuclease, TALENs bind and cleave DNA in pairs. Binding specificity is determined by customizable arrays of polymorphic amino acid repeats in the TAL effectors. We present a method and reagents for efficiently assembling TALEN constructs with custom repeat arrays. We also describe design guidelines based on naturally occurring TAL effectors and their binding sites. Using software that applies these guidelines, in nine genes from plants, animals and protists, we found candidate cleavage sites on average every 35 bp. Each of 15 sites selected from this set was cleaved in a yeast-based assay with TALEN pairs constructed with our reagents. We used two of the TALEN pairs to mutate HPRT1 in human cells and ADH1 in Arabidopsis thaliana protoplasts. Our reagents include a plasmid construct for making custom TAL effectors and one for TAL effector fusions to additional proteins of interest. Using the former, we constructed de novo a functional analog of AvrHah1 of Xanthomonas gardneri. The complete plasmid set is available through the non-profit repository AddGene and a web-based version of our software is freely accessible online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A TALE nuclease architecture for efficient genome editing.

            Nucleases that cleave unique genomic sequences in living cells can be used for targeted gene editing and mutagenesis. Here we develop a strategy for generating such reagents based on transcription activator-like effector (TALE) proteins from Xanthomonas. We identify TALE truncation variants that efficiently cleave DNA when linked to the catalytic domain of FokI and use these nucleases to generate discrete edits or small deletions within endogenous human NTF3 and CCR5 genes at efficiencies of up to 25%. We further show that designed TALEs can regulate endogenous mammalian genes. These studies demonstrate the effective application of designed TALE transcription factors and nucleases for the targeted regulation and modification of endogenous genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Paired-end mapping reveals extensive structural variation in the human genome.

              Structural variation of the genome involves kilobase- to megabase-sized deletions, duplications, insertions, inversions, and complex combinations of rearrangements. We introduce high-throughput and massive paired-end mapping (PEM), a large-scale genome-sequencing method to identify structural variants (SVs) approximately 3 kilobases (kb) or larger that combines the rescue and capture of paired ends of 3-kb fragments, massive 454 sequencing, and a computational approach to map DNA reads onto a reference genome. PEM was used to map SVs in an African and in a putatively European individual and identified shared and divergent SVs relative to the reference genome. Overall, we fine-mapped more than 1000 SVs and documented that the number of SVs among humans is much larger than initially hypothesized; many of the SVs potentially affect gene function. The breakpoint junction sequences of more than 200 SVs were determined with a novel pooling strategy and computational analysis. Our analysis provided insights into the mechanisms of SV formation in humans.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                23 May 2014
                2014
                : 4
                : 5052
                Affiliations
                [1 ]Plant Molecular Engineering Group, IZMB (Institute of Cellular and Molecular Botany), University of Bonn , Kirschallee 1, 53115 Bonn
                [2 ]Current address: Institute for Microbiology, Department of Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
                Author notes
                Article
                srep05052
                10.1038/srep05052
                4031481
                24852006
                fe7c176d-44f9-42f2-b46f-7100a5212c99
                Copyright © 2014, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The images in this article are included in the article's Creative Commons license, unless indicated otherwise in the image credit; if the image is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the image. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 28 January 2014
                : 06 May 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article