23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Drosophila Split Gal4 System for Neural Circuit Mapping

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The diversity and dense interconnectivity of cells in the nervous system present a huge challenge to understanding how brains work. Recent progress toward such understanding, however, has been fuelled by the development of techniques for selectively monitoring and manipulating the function of distinct cell types—and even individual neurons—in the brains of living animals. These sophisticated techniques are fundamentally genetic and have found their greatest application in genetic model organisms, such as the fruit fly Drosophila melanogaster. Drosophila combines genetic tractability with a compact, but cell-type rich, nervous system and has been the incubator for a variety of methods of neuronal targeting. One such method, called Split Gal4, is playing an increasingly important role in mapping neural circuits in the fly. In conjunction with functional perturbations and behavioral screens, Split Gal4 has been used to characterize circuits governing such activities as grooming, aggression, and mating. It has also been leveraged to comprehensively map and functionally characterize cells composing important brain regions, such as the central complex, lateral horn, and the mushroom body—the latter being the insect seat of learning and memory. With connectomics data emerging for both the larval and adult brains of Drosophila, Split Gal4 is also poised to play an important role in characterizing neurons of interest based on their connectivity. We summarize the history and current state of the Split Gal4 method and indicate promising areas for further development or future application.

          Related collections

          Most cited references144

          • Record: found
          • Abstract: found
          • Article: not found

          An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases.

          Germ-line transformation via transposable elements is a powerful tool to study gene function in Drosophila melanogaster. However, some inherent characteristics of transposon-mediated transgenesis limit its use for transgene analysis. Here, we circumvent these limitations by optimizing a phiC31-based integration system. We generated a collection of lines with precisely mapped attP sites that allow the insertion of transgenes into many different predetermined intergenic locations throughout the fly genome. By using regulatory elements of the nanos and vasa genes, we established endogenous sources of the phiC31 integrase, eliminating the difficulties of coinjecting integrase mRNA and raising the transformation efficiency. Moreover, to discriminate between specific and rare nonspecific integration events, a white gene-based reconstitution system was generated that enables visual selection for precise attP targeting. Finally, we demonstrate that our chromosomal attP sites can be modified in situ, extending their scope while retaining their properties as landing sites. The efficiency, ease-of-use, and versatility obtained here with the phiC31-based integration system represents an important advance in transgenesis and opens up the possibility of systematic, high-throughput screening of large cDNA sets and regulatory elements.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease

            We have adapted a bacterial CRISPR RNA/Cas9 system to precisely engineer the Drosophila genome and report that Cas9-mediated genomic modifications are efficiently transmitted through the germline. This RNA-guided Cas9 system can be rapidly programmed to generate targeted alleles for probing gene function in Drosophila.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Mushroom body memoir: from maps to models.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neural Circuits
                Front Neural Circuits
                Front. Neural Circuits
                Frontiers in Neural Circuits
                Frontiers Media S.A.
                1662-5110
                09 November 2020
                2020
                : 14
                : 603397
                Affiliations
                Laboratory of Molecular Biology, National Institute of Mental Health, NIH , Bethesda, MD, United States
                Author notes

                Edited by: Claude Desplan, New York University, United States

                Reviewed by: Aljoscha Nern, Janelia Research Campus, United States; André Fiala, University of Göttingen, Germany

                *Correspondence: Benjamin H. White benjaminwhite@ 123456mail.nih.gov
                Article
                10.3389/fncir.2020.603397
                7680822
                33240047
                fe697a95-d2da-4cc3-abb0-80c651c2495e
                Copyright © 2020 Luan, Diao, Scott and White.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 September 2020
                : 06 October 2020
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 144, Pages: 21, Words: 17790
                Funding
                Funded by: National Institute of Mental Health 10.13039/100000025
                Categories
                Neuroscience
                Review

                Neurosciences
                intersectional targeting,binary expression systems,cell type,connectomics,genetic models

                Comments

                Comment on this article