4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fluorescence imaging detection of nanodomain redox signaling events at organellar contacts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          This protocol describes how to visualize, detect, and analyze redox signals (oxidative bursts) at the ER-mitochondrial interface. It uses drug-inducible crosslinking to target the genetically encoded glutathione redox sensor Grx1roGFP2 to organellar contact sites to measure local redox changes associated with transient depolarizations of the mitochondrial membrane potential (flickers). The strategy allows imaging of the oxidized to reduced glutathione ratio (GSSG:GSH) in subcellular regions below the diffraction limit with good temporal resolution and minimum phototoxicity. Moreover, the strategy also applies to diverse parameters including pH, H 2O 2, and Ca 2+.

          For complete details on the use and execution of this profile, please refer to Booth et al. (2016) and Booth et al. (2021).

          Graphical abstract

          Highlights

          • Stepwise protocol for the use of interorganelle linkers to measure redox nanodomains

          • Guidelines for the simultaneous imaging of mitochondrial flickers

          • Measurement normalization strategies to determine redox kinetics

          Abstract

          This protocol describes how to visualize, detect, and analyze redox signals (oxidative bursts) at the ER-mitochondrial interface. It uses drug-inducible crosslinking to target the genetically encoded glutathione redox sensor Grx1roGFP2 to organellar contact sites to measure local redox changes associated with transient depolarizations of the mitochondrial membrane potential (flickers). The strategy allows imaging of the oxidized to reduced glutathione ratio (GSSG:GSH) in subcellular regions below the diffraction limit with good temporal resolution and minimum phototoxicity. Moreover, the strategy also applies to diverse parameters including pH, H 2O 2, and Ca 2+.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          A pyramid approach to subpixel registration based on intensity.

          We present an automatic subpixel registration algorithm that minimizes the mean square intensity difference between a reference and a test data set, which can be either images (two-dimensional) or volumes (three-dimensional). It uses an explicit spline representation of the images in conjunction with spline processing, and is based on a coarse-to-fine iterative strategy (pyramid approach). The minimization is performed according to a new variation (ML*) of the Marquardt-Levenberg algorithm for nonlinear least-square optimization. The geometric deformation model is a global three-dimensional (3-D) affine transformation that can be optionally restricted to rigid-body motion (rotation and translation), combined with isometric scaling. It also includes an optional adjustment of image contrast differences. We obtain excellent results for the registration of intramodality positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) data. We conclude that the multiresolution refinement strategy is more robust than a comparable single-stage method, being less likely to be trapped into a false local optimum. In addition, our improved version of the Marquardt-Levenberg algorithm is faster.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface.

            The ER-mitochondrial junction provides a local calcium signaling domain that is critical for both matching energy production with demand and the control of apoptosis. Here, we visualize ER-mitochondrial contact sites and monitor the localized [Ca(2+)] changes ([Ca(2+)](ER-mt)) using drug-inducible fluorescent interorganelle linkers. We show that all mitochondria have contacts with the ER, but plasma membrane (PM)-mitochondrial contacts are less frequent because of interleaving ER stacks in both RBL-2H3 and H9c2 cells. Single mitochondria display discrete patches of ER contacts and show heterogeneity in the ER-mitochondrial Ca(2+) transfer. Pericam-tagged linkers revealed IP(3)-induced [Ca(2+)](ER-mt) signals that exceeded 9 microM and endured buffering bulk cytoplasmic [Ca(2+)] increases. Altering linker length to modify the space available for the Ca(2+) transfer machinery had a biphasic effect on [Ca(2+)](ER-mt) signals. These studies provide direct evidence for the existence of high-Ca(2+) microdomains between the ER and mitochondria and suggest an optimal gap width for efficient Ca(2+) transfer. 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways.

              We made substantial advances in the implementation of a rapamycin-triggered heterodimerization strategy. Using molecular engineering of different targeting and enzymatic fusion constructs and a new rapamycin analog, Rho GTPases were directly activated or inactivated on a timescale of seconds, which was followed by pronounced cell morphological changes. As signaling processes often occur within minutes, such rapid perturbations provide a powerful tool to investigate the role, selectivity and timing of Rho GTPase-mediated signaling processes.
                Bookmark

                Author and article information

                Contributors
                Journal
                STAR Protoc
                STAR Protoc
                STAR Protocols
                Elsevier
                2666-1667
                20 January 2022
                18 March 2022
                20 January 2022
                : 3
                : 1
                : 101119
                Affiliations
                [1 ]MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Jefferson Alumni Hall 1020 Locust Street, Philadelphia, PA 19107, USA
                [2 ]Department of Physiology, Semmelweis University, Faculty of Medicine, 1444 Budapest, Hungary
                Author notes
                []Corresponding author bs0u0155@ 123456gmail.com
                [∗∗ ]Corresponding author gyorgy.hajnoczky@ 123456jefferson.edu
                [3]

                Technical contact

                [4]

                Lead contact

                Article
                S2666-1667(21)00825-X 101119
                10.1016/j.xpro.2021.101119
                8783204
                35098166
                fe1bc780-e798-43d6-9573-0aadda759db9
                © 2022 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Protocol

                cell biology,microscopy,molecular/chemical probes
                cell biology, microscopy, molecular/chemical probes

                Comments

                Comment on this article