118
views
0
recommends
+1 Recommend
6 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world’s population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China’s participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China’s use of N fertilizer, we quantify the carbon footprint of China’s N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO 2 -equivalent (eq) (t CO 2 -eq) is emitted, compared with 9.7 t CO 2 -eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO 2 -eq (Tg CO 2 -eq)] to 2010 (452 Tg CO 2 -eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20–63%, amounting to 102–357 Tg CO 2 -eq annually. Such reduction would decrease China’s total GHG emissions by 2–6%, which is significant on a global scale.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          How a century of ammonia synthesis changed the world

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The carbon balance of terrestrial ecosystems in China.

            Global terrestrial ecosystems absorbed carbon at a rate of 1-4 Pg yr(-1) during the 1980s and 1990s, offsetting 10-60 per cent of the fossil-fuel emissions. The regional patterns and causes of terrestrial carbon sources and sinks, however, remain uncertain. With increasing scientific and political interest in regional aspects of the global carbon cycle, there is a strong impetus to better understand the carbon balance of China. This is not only because China is the world's most populous country and the largest emitter of fossil-fuel CO(2) into the atmosphere, but also because it has experienced regionally distinct land-use histories and climate trends, which together control the carbon budget of its ecosystems. Here we analyse the current terrestrial carbon balance of China and its driving mechanisms during the 1980s and 1990s using three different methods: biomass and soil carbon inventories extrapolated by satellite greenness measurements, ecosystem models and atmospheric inversions. The three methods produce similar estimates of a net carbon sink in the range of 0.19-0.26 Pg carbon (PgC) per year, which is smaller than that in the conterminous United States but comparable to that in geographic Europe. We find that northeast China is a net source of CO(2) to the atmosphere owing to overharvesting and degradation of forests. By contrast, southern China accounts for more than 65 per cent of the carbon sink, which can be attributed to regional climate change, large-scale plantation programmes active since the 1980s and shrub recovery. Shrub recovery is identified as the most uncertain factor contributing to the carbon sink. Our data and model results together indicate that China's terrestrial ecosystems absorbed 28-37 per cent of its cumulated fossil carbon emissions during the 1980s and 1990s.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reducing environmental risk by improving N management in intensive Chinese agricultural systems.

              Excessive N fertilization in intensive agricultural areas of China has resulted in serious environmental problems because of atmospheric, soil, and water enrichment with reactive N of agricultural origin. This study examines grain yields and N loss pathways using a synthetic approach in 2 of the most intensive double-cropping systems in China: waterlogged rice/upland wheat in the Taihu region of east China versus irrigated wheat/rainfed maize on the North China Plain. When compared with knowledge-based optimum N fertilization with 30-60% N savings, we found that current agricultural N practices with 550-600 kg of N per hectare fertilizer annually do not significantly increase crop yields but do lead to about 2 times larger N losses to the environment. The higher N loss rates and lower N retention rates indicate little utilization of residual N by the succeeding crop in rice/wheat systems in comparison with wheat/maize systems. Periodic waterlogging of upland systems caused large N losses by denitrification in the Taihu region. Calcareous soils and concentrated summer rainfall resulted in ammonia volatilization (19% for wheat and 24% for maize) and nitrate leaching being the main N loss pathways in wheat/maize systems. More than 2-fold increases in atmospheric deposition and irrigation water N reflect heavy air and water pollution and these have become important N sources to agricultural ecosystems. A better N balance can be achieved without sacrificing crop yields but significantly reducing environmental risk by adopting optimum N fertilization techniques, controlling the primary N loss pathways, and improving the performance of the agricultural Extension Service.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc. Natl. Acad. Sci. U.S.A.
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                May 21 2013
                May 13 2013
                May 21 2013
                : 110
                : 21
                : 8375-8380
                Affiliations
                [1 ]Key Laboratory of Plant–Soil Interactions, Ministry of Education, and Center for Resources, Environment, and Food Security, China Agricultural University, Beijing 100193, China;
                [2 ]Center for Animal Health and Productivity, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348;
                [3 ]Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom;
                [4 ]Department of Sustainable Soils and Grassland Systems, Rothamsted Research, North Wyke, Okehampton EX20 2SB, United Kingdom;
                [5 ]Environment Institute, University College London, London WC1E 6BT, United Kingdom;
                [6 ]International Development UEA, University of East Anglia, Norwich NR4 7TJ, United Kingdom; and
                [7 ]Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583-0915
                Article
                10.1073/pnas.1210447110
                23671096
                fdfad609-2f8e-4c5f-a997-c0b59915709d
                © 2013
                History

                Comments

                Comment on this article