Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Mechanisms of Bipolar Disorder: Progress Made and Future Challenges

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bipolar disorder (BD) is a chronic and progressive psychiatric illness characterized by mood oscillations, with episodes of mania and depression. The impact of BD on patients can be devastating, with up to 15% of patients committing suicide. This disorder is associated with psychiatric and medical comorbidities and patients with a high risk of drug abuse, metabolic and endocrine disorders and vascular disease. Current knowledge of the pathophysiology and molecular mechanisms causing BD is still modest. With no clear biological markers available, early diagnosis is a great challenge to clinicians without previous knowledge of the longitudinal progress of illness. Moreover, despite recommendations from evidence-based guidelines, polypharmacy is still common in clinical treatment of BD, reflecting the gap between research and clinical practice. A major challenge in BD is the development of effective drugs with low toxicity for the patients. In this review article, we focus on the progress made and future challenges we face in determining the pathophysiology and molecular pathways involved in BD, such as circadian and metabolic perturbations, mitochondrial and endoplasmic reticulum (ER) dysfunction, autophagy and glutamatergic neurotransmission; which may lead to the development of new drugs.

          Related collections

          Most cited references135

          • Record: found
          • Abstract: found
          • Article: not found

          Interneurons of the neocortical inhibitory system.

          Mammals adapt to a rapidly changing world because of the sophisticated cognitive functions that are supported by the neocortex. The neocortex, which forms almost 80% of the human brain, seems to have arisen from repeated duplication of a stereotypical microcircuit template with subtle specializations for different brain regions and species. The quest to unravel the blueprint of this template started more than a century ago and has revealed an immensely intricate design. The largest obstacle is the daunting variety of inhibitory interneurons that are found in the circuit. This review focuses on the organizing principles that govern the diversity of inhibitory interneurons and their circuits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid single-step induction of functional neurons from human pluripotent stem cells.

            Available methods for differentiating human embryonic stem cells (ESCs) and induced pluripotent cells (iPSCs) into neurons are often cumbersome, slow, and variable. Alternatively, human fibroblasts can be directly converted into induced neuronal (iN) cells. However, with present techniques conversion is inefficient, synapse formation is limited, and only small amounts of neurons can be generated. Here, we show that human ESCs and iPSCs can be converted into functional iN cells with nearly 100% yield and purity in less than 2 weeks by forced expression of a single transcription factor. The resulting ES-iN or iPS-iN cells exhibit quantitatively reproducible properties independent of the cell line of origin, form mature pre- and postsynaptic specializations, and integrate into existing synaptic networks when transplanted into mouse brain. As illustrated by selected examples, our approach enables large-scale studies of human neurons for questions such as analyses of human diseases, examination of human-specific genes, and drug screening. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Animal models of neuropsychiatric disorders.

              Modeling of human neuropsychiatric disorders in animals is extremely challenging given the subjective nature of many symptoms, the lack of biomarkers and objective diagnostic tests, and the early state of the relevant neurobiology and genetics. Nonetheless, progress in understanding pathophysiology and in treatment development would benefit greatly from improved animal models. Here we review the current state of animal models of mental illness, with a focus on schizophrenia, depression and bipolar disorder. We argue for areas of focus that might increase the likelihood of creating more useful models, at least for some disorders, and for explicit guidelines when animal models are reported.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                14 February 2017
                2017
                : 11
                : 30
                Affiliations
                [1] 1Laboratory of Genetics, The Salk Institute for Biological Studies La Jolla, CA, USA
                [2] 2Department of Child and Adolescent Psychiatry, National Center for Mental Health Seoul, South Korea
                [3] 3Ecole Normale Supérieure, PSL Research University, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Biologie de l’Ecole Normale Supérieure (IBENS) Paris, France
                Author notes

                Edited by: Daniela Tropea, Trinity College, Dublin, Ireland

                Reviewed by: Haim Einat, Tel Aviv-Yaffo Academic College, Israel; James P. Kesby, University of Queensland, Australia

                *Correspondence: Maria C. Marchetto marchetto@ 123456salk.edu

                These authors have contributed equally to this work.

                Article
                10.3389/fncel.2017.00030
                5306135
                28261061
                fd61b94a-8992-41bf-a243-4570dcca58a1
                Copyright © 2017 Kim, Santos, Gage and Marchetto.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 November 2016
                : 01 February 2017
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 197, Pages: 15, Words: 13100
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: R01MH095741
                Award ID: U19MH106434
                Funded by: Janssen Pharmaceuticals 10.13039/100008897
                Funded by: Paul G. Allen Family Foundation 10.13039/100000952
                Funded by: Leona M. and Harry B. Helmsley Charitable Trust 10.13039/100007028
                Award ID: #2012-PG-MED002
                Funded by: G. Harold and Leila Y. Mathers Charitable Foundation 10.13039/100001229
                Categories
                Neuroscience
                Review

                Neurosciences
                bipolar disorder,mitochondrial dysfunction,endoplasmic reticulum stress,oxidative stress,glutamate,hyperexcitability,disease modeling

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content77

                Cited by34

                Most referenced authors2,508