124
views
0
recommends
+1 Recommend
0 collections
    16
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Channelrhodopsin with a Red-Shifted Spectrum and Rapid Kinetics from Mesostigma viride

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Light control of motility behavior (phototaxis and photophobic responses) in green flagellate algae is mediated by sensory rhodopsins homologous to phototaxis receptors and light-driven ion transporters in prokaryotic organisms. In the phototaxis process, excitation of the algal sensory rhodopsins leads to generation of transmembrane photoreceptor currents. When expressed in animal cells, the algal phototaxis receptors function as light-gated cation channels, which has earned them the name “channelrhodopsins.” Channelrhodopsins have become useful molecular tools for light control of cellular activity. Only four channelrhodopsins, identified in Chlamydomonas reinhardtii and Volvox carteri, have been reported so far. By screening light-induced currents among algal species, we identified that the phylogenetically distant flagellate Mesostigma viride showed photoelectrical responses in vivo with properties suggesting a channelrhodopsin especially promising for optogenetic use. We cloned an M. viride channelrhodopsin, MChR1, and studied its channel activity upon heterologous expression. Action spectra in HEK293 cells match those of the photocurrents observed in M. viride cells. Comparison of the more divergent MChR1 sequence to the previously studied phylogenetically clustered homologs and study of several MChR1 mutants refine our understanding of the sequence determinants of channelrhodopsin function. We found that MChR1 has the most red-shifted and pH-independent spectral sensitivity so far reported, matches or surpasses known channelrhodopsins’ channel kinetics features, and undergoes minimal inactivation upon sustained illumination. This combination of properties makes MChR1 a promising candidate for optogenetic applications.

          IMPORTANCE

          Channelrhodopsins that function as phototaxis receptors in flagellate algae have recently come into the spotlight as genetically encoded single-molecule optical switches for turning on neuronal firing or other cellular processes, a technique called “optogenetics.” Only one of four currently known channelrhodopsins is widely used in optogenetics, although electrical currents recorded in diverse flagellates suggest the existence of a large variety of such proteins. We applied a strategy for the search for new channelrhodopsins with desirable characteristics by measuring rhodopsin-mediated photocurrents in microalgae, which helped us identify MChR1, a new member of the channelrhodopsin family. MChR1 exhibits several sought-after characteristics and thus expands the available optogenetic toolbox. The divergence of the MChR1 sequence from those of the four known channelrhodopsins contributes to our understanding of diversity in the primary structures of this subfamily of sensory rhodopsins.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Channelrhodopsin-1: a light-gated proton channel in green algae.

          Phototaxis and photophobic responses of green algae are mediated by rhodopsins with microbial-type chromophores. We report a complementary DNA sequence in the green alga Chlamydomonas reinhardtii that encodes a microbial opsin-related protein, which we term Channelopsin-1. The hydrophobic core region of the protein shows homology to the light-activated proton pump bacteriorhodopsin. Expression of Channelopsin-1, or only the hydrophobic core, in Xenopus laevis oocytes in the presence of all-trans retinal produces a light-gated conductance that shows characteristics of a channel selectively permeable for protons. We suggest that Channelrhodopsins are involved in phototaxis of green algae.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ultrafast optogenetic control.

            Channelrhodopsins such as channelrhodopsin-2 (ChR2) can drive spiking with millisecond precision in a wide variety of cells, tissues and animal species. However, several properties of this protein have limited the precision of optogenetic control. First, when ChR2 is expressed at high levels, extra spikes (for example, doublets) can occur in response to a single light pulse, with potential implications as doublets may be important for neural coding. Second, many cells cannot follow ChR2-driven spiking above the gamma (approximately 40 Hz) range in sustained trains, preventing temporally stationary optogenetic access to a broad and important neural signaling band. Finally, rapid optically driven spike trains can result in plateau potentials of 10 mV or more, causing incidental upstates with information-processing implications. We designed and validated an engineered opsin gene (ChETA) that addresses all of these limitations (profoundly reducing extra spikes, eliminating plateau potentials and allowing temporally stationary, sustained spike trains up to at least 200 Hz).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bi-stable neural state switches.

              Here we describe bi-stable channelrhodopsins that convert a brief pulse of light into a stable step in membrane potential. These molecularly engineered probes nevertheless retain millisecond-scale temporal precision. Photocurrents can be precisely initiated and terminated with different colors of light, but operate at vastly longer time scales than conventional channelrhodopsins as a result of modification at the C128 position that extends the lifetime of the open state. Because of their enhanced kinetic stability, these step-function tools are also effectively responsive to light at orders of magnitude lower intensity than wild-type channelrhodopsins. These molecules therefore offer important new capabilities for a broad range of in vivo applications.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                21 June 2011
                May-Jun 2011
                : 2
                : 3
                : e00115-11
                Affiliations
                Center for Membrane Biology, Department of Biochemistry and Molecular Biology, [ a ] and
                Department of Microbiology and Molecular Genetics, [ b ]
                [3]University of Texas Medical School, Houston, Texas, USA
                Author notes
                Address correspondence to Oleg A. Sineshchekov, oleg.a.sineshchekov@uth.tmc.edu, and John L. Spudich, john.l.spudich@ 123456uth.tmc.edu .

                Editor Howard Shuman, University of Chicago

                Article
                mBio00115-11
                10.1128/mBio.00115-11
                3119535
                21693637
                fd06827a-74be-4b12-9c3b-0b6e5a6d1709
                Copyright © 2011 Govorunova et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 May 2011
                : 27 May 2011
                Page count
                Pages: 9
                Categories
                Research Article
                Custom metadata
                May/June 2011

                Life sciences
                Life sciences

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content6

                Cited by23

                Most referenced authors338