33
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Clinical Interventions in Aging (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on prevention and treatment of diseases in people over 65 years of age. Sign up for email alerts here.

      36,334 Monthly downloads/views I 3.829 Impact Factor I 7.4 CiteScore I 1.83 Source Normalized Impact per Paper (SNIP) I 1.044 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased neutrophil–lymphocyte ratio in delirium: a pilot study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim

          Delirium is a common and severe complication among older hospitalized patients. The pathophysiology is poorly understood, but it has been suggested that inflammation and oxidative stress may play a role. The aim of this pilot study was to investigate levels of the neutrophil–lymphocyte ratio (NLR) – a marker of systemic inflammation and oxidative stress – in patients with and without delirium.

          Methods

          This pilot study was performed within a retrospective chart review study that included acutely ill patients, 65 years and older, who were admitted to the ward of geriatrics of the Erasmus University Medical Center. All patients in whom the differential white blood cell (WBC) counts as well as the C-reactive protein (CRP) level were determined within 24 h after admission were included in the present study. Differences in NLR between patients with and without delirium were investigated using univariate analysis of variance, with adjustments for age, sex, comorbidities, CRP level, and total WBC count.

          Results

          Eighty-six patients were included. Thirteen patients were diagnosed with delirium. In adjusted models, higher mean NLR values were found in patients with, than in those without, delirium (9.10 vs 5.18, P=0.003).

          Conclusion

          In this pilot study, we found increased NLR levels in patients with delirium. This finding might suggest that an inadequate response of the immune system and oxidative stress may play a role in the pathogenesis of delirium. Further studies are needed to confirm the association between NLR and delirium.

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Association between admission neutrophil to lymphocyte ratio and outcomes in patients with acute coronary syndrome.

          The neutrophil/lymphocyte ratio (NLR) has recently been described as a predictor of mortality in patients who undergo percutaneous coronary intervention. The aim of this study was to investigate the utility of admission NLRs in predicting outcomes in patients with acute coronary syndromes (ACS). A total of 2,833 patients admitted to the University of Michigan Health System with diagnoses of ACS from December 1998 to October 2004 were followed. Patients were divided into tertiles according to NLR. The primary end point was all-cause in-hospital and 6-month mortality. The ACS cohort comprised 564 patients with ST-segment elevation myocardial infarctions and 2,269 patients with non-ST-segment elevation ACS. Patients in tertile 3 had higher in-hospital (8.5% vs 1.8%) and 6-month (11.5% vs 2.5%) mortality compared with those in tertile 1 (p <0.001). After adjusting for Global Registry of Acute Coronary Events risk profile, patients in the highest tertile were at an exaggerated risk for in-hospital (odds ratio 2.04, p = 0.013) and 6-month (odds ratio 3.88, p <0.001) mortality. Admission NLR is an independent predictor of in-hospital and 6-month mortality in patients with ACS. This relatively inexpensive marker of inflammation can aid in the risk stratification and prognosis of patients diagnosed with ACS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking.

            Delayed type hypersensitivity (DTH) reactions are antigen-specific, cell-mediated immune responses which, depending on the antigen involved, mediate beneficial (resistance to viruses, bacteria, fungi, and certain tumors) or harmful (allergic dermatitis, autoimmunity) aspects of immune function. We have shown that acute stress administered immediately before antigenic challenge results in a significant enhancement of a skin DTH response in rats. A stress-induced trafficking or redeployment of leukocytes to the skin may be one of the factors mediating this immunoenhancement. Here we investigate the effects of varying the duration, intensity, and chronicity of stress on the DTH response and on changes in blood leukocyte distribution and glucocorticoid levels. Acute stress administered for 2 h prior to antigenic challenge, significantly enhanced the DTH response. Increasing the duration of stress from 2 h to 5 h produced the same magnitude enhancement in cutaneous DTH. Moreover, increasing the intensity of acute stress produced a significantly larger enhancement of the DTH response which was accompanied by increasing magnitudes of leukocyte redeployment. In contrast, chronic stress suppressed the DTH response when it was administered for 3 weeks before sensitization and either discontinued upon sensitization, or continued an additional week until challenge, or extended for one week after challenge. The stress-induced redeployment of peripheral blood lymphocytes was attenuated with increasing exposure to chronic stress and correlated with attenuated glucocorticoid responsivity. These results suggest that stress-induced alterations in lymphocyte redeployment may play an important role in mediating the bi-directional effects of acute versus chronic stress on cell-mediated immunity in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stress-induced redistribution of immune cells--from barracks to boulevards to battlefields: a tale of three hormones--Curt Richter Award winner.

              The surveillance and effector functions of the immune system are critically dependent on the appropriate distribution of immune cells in the body. An acute or short-term stress response induces a rapid and significant redistribution of immune cells among different body compartments. Stress-induced leukocyte redistribution may be a fundamental survival response that directs leukocyte subpopulations to specific target organs during stress, and significantly enhances the speed, efficacy and regulation of an immune response. Immune responses are generally enhanced in compartments (e.g., skin) that are enriched with leukocytes, and suppressed in compartments that are depleted of leukocytes during/following stress. The experiments described here were designed to elucidate the: (1) Time-course, trajectory, and subpopulation-specificity of stress-induced mobilization and trafficking of blood leukocytes. (2) Individual and combined actions of the principal stress hormones, norepinephrine (NE), epinephrine (EPI), and corticosterone (CORT), in mediating mobilization or trafficking of specific leukocyte subpopulations. (3) Effects of stress/stress hormones on adhesion molecule, L-selectin (CD62L), expression by each subpopulation to assess its adhesion/functional/maturation status. Male Sprague Dawley rats were stressed (short-term restraint, 2-120 min), or adrenalectomized and injected with vehicle (VEH), NE, EPI, CORT, or their combinations, and blood was collected for measurement of hormones and flow cytometric quantification of leukocyte subpopulations. Acute stress induced an early increase/mobilization of neutrophils, lymphocytes, helper T cells (Th), cytolytic T cells (CTL), and B cells into the blood, followed by a decrease/trafficking of all cell types out of the blood, except neutrophil numbers that continued to increase. CD62L expression was increased on neutrophils, decreased on Th, CTL, and natural killer (NK) cells, and showed a biphasic decrease on monocytes & B cells, suggesting that CD62L is involved in mediating the redistribution effects of stress. Additionally, we observed significant differences in the direction, magnitude, and subpopulation specificity of the effects of each hormone: NE increased leukocyte numbers, most notably CD62L⁻/⁺ neutrophils and CD62L⁻ B cells. EPI increased monocyte and neutrophil numbers, most notably CD62L⁻/⁺ neutrophils and CD62L⁻ monocytes, but decreased lymphocyte numbers with CD62L⁻/⁺ CTL and CD62L⁺ B cells being especially sensitive. CORT decreased monocyte, lymphocyte, Th, CTL, and B cell numbers with CD62L⁻ and CD62L⁺ cells being equally affected. Thus, naïve (CD62L⁺) vs. memory (CD62L⁻) T cells, classical (CD62L⁺) vs. non-classical (CD62L⁻) monocytes, and similarly distinct functional subsets of other leukocyte populations are differentially mobilized into the blood and trafficked to tissues by stress hormones. Stress hormones orchestrate a large-scale redistribution of immune cells in the body. NE and EPI mobilize immune cells into the bloodstream, and EPI and CORT induce traffic out of the blood possibly to tissue surveillance pathways, lymphoid tissues, and sites of ongoing or de novo immune activation. Immune cell subpopulations appear to show differential sensitivities and redistribution responses to each hormone depending on the type of leukocyte (neutrophil, monocyte or lymphocyte) and its maturation/functional characteristics (e.g., non-classical/resident or classical/inflammatory monocyte, naïve or central/effector memory T cell). Thus, stress hormones could be administered simultaneously or sequentially to induce specific leukocyte subpopulations to be mobilized into the blood, or to traffic from blood to tissues. Stress- or stress hormone-mediated changes in immune cell distribution could be clinically harnessed to: (1) Direct leukocytes to sites of vaccination, wound healing, infection, or cancer and thereby enhance protective immunity. (2) Reduce leukocyte traffic to sites of inflammatory/autoimmune reactions. (3) Sequester immune cells in relatively protected compartments to minimize exposure to cytotoxic treatments like radiation or localized chemotherapy. (4) Measure biological resistance/sensitivity to stress hormones in vivo. In keeping with the guidelines for Richter Award manuscripts, in addition to original data we also present a model and synthesis of findings in the context of the literature on the effects of short-term stress on immune cell distribution and function. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Clin Interv Aging
                Clin Interv Aging
                Clinical Interventions in Aging
                Clinical Interventions in Aging
                Dove Medical Press
                1176-9092
                1178-1998
                2017
                14 July 2017
                : 12
                : 1115-1121
                Affiliations
                Section of Geriatric Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
                Author notes
                Correspondence: Angelique Egberts; Francesco US Mattace-Raso, Section of Geriatric Medicine, Department of Internal Medicine, Erasmus University Medical Center, Room D434, PO Box 2040, 3000 CA Rotterdam, the Netherlands, Tel +31 10 70 35979, Fax +31 10 70 34768, Email a.egberts@ 123456erasmusmc.nl ; f.mattaceraso@ 123456erasmusmc.nl
                Article
                cia-12-1115
                10.2147/CIA.S137182
                5529095
                28769556
                fcfcf63e-dcbc-4e96-90a2-ef2556dfcb3f
                © 2017 Egberts and Mattace-Raso. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Health & Social care
                delirium,pathology,biomarkers,leukocytes,immune system,brain
                Health & Social care
                delirium, pathology, biomarkers, leukocytes, immune system, brain

                Comments

                Comment on this article