Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mapping management intensity types in grasslands with synergistic use of Sentinel-1 and Sentinel-2 satellite images

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Grasslands, being vital ecosystems with significant ecological and socio-economic importance, have been the subject of increasing attention due to their role in biodiversity conservation, carbon sequestration, and agricultural productivity. However, accurately classifying grassland management intensity, namely extensive and intensive practices, remains challenging, especially across large spatial extents. This research article presents a comprehensive investigation into the classification of grassland management intensity in two distinct regions of Poland, NUTS2 - namely Podlaskie (PL84) and Wielkopolskie (PL41), by integrating data from Sentinel-1 and Sentinel-2 satellite imagery. The study leverages the unique capabilities of Sentinel-1, a radar satellite, and Sentinel-2, an optical multispectral satellite, to overcome the limitations of using a single data source. Preprocessed Sentinel-1 and Sentinel-2 data were combined to extract spectral and textural features, providing valuable insights into grassland characteristics and patterns. Supervised classification using the Random Forest algorithm was used, and ground truth data from field surveys facilitated the creation of training samples. In Podlaskie, extensive grasslands achieved an overall accuracy (OA) of 84%, while intensive grasslands attained an OA of 83%. In Wielkopolskie, extensive grasslands exhibited an OA of 84%, while intensive grasslands achieved an OA of 83%. Additionally, the classification metrics, including user’s accuracy (UA), F1 score, and producer’s accuracy (PA), further highlighted the variations in classification accuracy. This comprehensive mapping of grassland management intensity using combined Sentinel-1 and Sentinel-2 data provides valuable insights for conservation agencies, agricultural stakeholders, and land managers. The study’s findings contribute to sustainable land management and decision-making processes, facilitating the identification of ecologically valuable areas, optimizing agricultural productivity, and assessing the impacts of different management strategies. Furthermore, the research highlights the potential of Sentinel missions for grassland monitoring and emphasizes the importance of advanced remote sensing techniques for understanding and preserving these crucial ecosystems.

          Supplementary Information

          The online version contains supplementary material available at 10.1038/s41598-024-83699-4.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: not found
          • Article: not found

          Random Forests

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Google Earth Engine: Planetary-scale geospatial analysis for everyone

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other

                Bookmark

                Author and article information

                Contributors
                maciej.bartold@igik.edu.pl
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                30 December 2024
                30 December 2024
                2024
                : 14
                : 32066
                Affiliations
                [1 ]Institute of Geodesy and Cartography, Remote Sensing Centre, ( https://ror.org/00ph65r66) 27 Modzelewskiego St, 02-679 Warsaw, Poland
                [2 ]Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, ( https://ror.org/03tth1e03) 11 Dojazd St, 60- 632 Poznań, Poland
                Article
                83699
                10.1038/s41598-024-83699-4
                11685408
                39738429
                fcf29d09-d458-4807-ad2d-3b3c8132eb5d
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

                History
                : 23 May 2024
                : 17 December 2024
                Funding
                Funded by: Polish-Norwegian Research Programme
                Award ID: NOR/POLNOR/GrasSAT/0031/2019-00
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                extensive and intensive managed grassland,machine learning,backscatter,multispectral bands,satellite imagery,ecosystem services,environmental economics,grassland ecology,plant development,environmental sciences

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content172

                Most referenced authors774