18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Surgical Stress Delays Prostate Involution in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Androgens control growth of prostate epithelial cells and androgen deprivation induces apoptosis, leading to prostate involution. We investigated the effects of surgical stress on prostate involution induced by androgen ablation and determined the underlying mechanisms. Androgen ablation in mice was induced by surgical castration and administration of the anti-androgenic drugs bicalutamide and MDV3100. Surgical stress was induced by sham castration under isoflurane anesthesia. Surgical stress delayed apoptosis and prostate involution induced by anti-androgenic drugs. These effects of stress were prevented by administering the selective beta2-adrenoreceptor antagonist ICI118,551 and were also blocked in BAD 3SA/WT mice expressing phosphorylation-deficient mutant BAD3SA. These results indicate that apoptosis and prostate involution in response to androgen ablation therapy could be delayed by surgical stress via the beta2-adrenoreceptor/BAD signaling pathway. Thus, surgery could interfere with androgen ablation therapy, whereas administration of beta2-adrenoreceptor antagonists may enhance its efficacy.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Behavioral stress accelerates prostate cancer development in mice.

          Prostate cancer patients have increased levels of stress and anxiety. Conversely, men who take beta blockers, which interfere with signaling from the stress hormones adrenaline and noradrenaline, have a lower incidence of prostate cancer; however, the mechanisms underlying stress-prostate cancer interactions are unknown. Here, we report that stress promotes prostate carcinogenesis in mice in an adrenaline-dependent manner. Behavioral stress inhibited apoptosis and delayed prostate tumor involution both in phosphatase and tensin homolog-deficient (PTEN-deficient) prostate cancer xenografts treated with PI3K inhibitor and in prostate tumors of mice with prostate-restricted expression of c-MYC (Hi-Myc mice) subjected to androgen ablation therapy with bicalutamide. Additionally, stress accelerated prostate cancer development in Hi-Myc mice. The effects of stress were prevented by treatment with the selective β2-adrenergic receptor (ADRB2) antagonist ICI118,551 or by inducible expression of PKA inhibitor (PKI) or of BCL2-associated death promoter (BAD) with a mutated PKA phosphorylation site (BADS112A) in xenograft tumors. Effects of stress were also blocked in Hi-Myc mice expressing phosphorylation-deficient BAD (BAD3SA). These results demonstrate interactions between prostate tumors and the psychosocial environment mediated by activation of an adrenaline/ADRB2/PKA/BAD antiapoptotic signaling pathway. Our findings could be used to identify prostate cancer patients who could benefit from stress reduction or from pharmacological inhibition of stress-induced signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers.

            The development of metastases is a decisive step in the course of a cancer disease. The detection of metastases in cancer patients is correlated with a poor prognosis, and over 90% of all deaths from cancer are not due to the primary tumor, which often can be successfully treated, but are due to the metastases. Tumor cell migration, a prerequisite for metastasis development, is not merely genetically determined, but is distinctly regulated by signal substances of the environment including chemokines and neurotransmitters. We have shown previously that the migration of breast, prostate, and colon carcinoma cells is enhanced by the stress-related neurotransmitter norepinephrine in vitro, and that this effect can be inhibited by the beta-blocker propranolol. We now provide for the first time evidence for the in vivo relevance of this neurotransmitter-driven regulation using PC-3 prostate carcinoma cells. The development of lumbar lymph node metastases in athymic BALB/c nude mice increased with the application of norepinephrine via microosmotic pumps, while propranolol inhibited this effect. However, the growth of the primary tumor was not affected by either treatment. Additionally, experiments using human tissue microarrays showed that 70-90 percent of breast, colon, and prostate carcinoma tissues express the relevant beta2-adrenoceptor. Thus, our work contributes to the understanding of the basic cellular mechanisms of metastasis development, and furthermore delivers a rationale for the chemopreventive use of clinically established beta-blockers for the inhibition of metastases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Surgical stress promotes tumor growth in ovarian carcinoma.

              Surgical stress has been suggested to facilitate the growth of preexisting micrometastases as well as small residual tumor postoperatively. The purpose of this study was to examine the effects of surgical stress on ovarian cancer growth and to determine underlying mechanisms responsible for increased growth. To mimic the effects of surgery, we did a laparotomy or mastectomy under isoflurane inhalation on athymic nude mice 4 days after i.p. tumor cell injection. Propranolol infusion via Alzet pumps was used to block the influence of sympathetic nervous system activation by surgical stress. In both HeyA8 and SKOV3ip1 models, the mice in the laparotomy and mastectomy groups had significantly greater tumor weight (P < 0.05) and nodules (P < 0.05) compared with anesthesia only controls. There was no increase in tumor weight following surgery in the beta-adrenergic receptor-negative RMG-II model. Propranolol completely blocked the effects of surgical stress on tumor growth, indicating a critical role for beta-adrenergic receptor signaling in mediating the effects of surgical stress on tumor growth. In the HeyA8 and SKOV3ip1 models, surgery significantly increased microvessel density (CD31) and vascular endothelial growth factor expression, which were blocked by propranolol treatment. These results indicate that surgical stress could enhance tumor growth and angiogenesis, and beta-blockade might be effective in preventing such effects.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                6 November 2013
                : 8
                : 11
                : e78175
                Affiliations
                [1 ]Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
                [2 ]Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
                [3 ]College of Science, Alfaisal University, Riyadh, Saudi Arabia
                University of Missouri-Columbia, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SH GK. Performed the experiments: SH AF YK. Analyzed the data: SH GK RD. Contributed reagents/materials/analysis tools: SH. Wrote the paper: SH GK.

                Article
                PONE-D-13-28363
                10.1371/journal.pone.0078175
                3819334
                fcec2ba5-6814-43ad-80d7-d1342b63a099
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 July 2013
                : 9 September 2013
                Page count
                Pages: 6
                Funding
                Project described was supported by PC073548 award from the Department of Defense and Award Number R01CA118329 from the National Cancer Institute to George Kulik. Biostatistical support was made possible by NCI Cancer Center Support Grant (CCSG) P30CA012197. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health. Funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article