1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stem cell-derived extracellular vesicles in the therapeutic intervention of Alzheimer's Disease, Parkinson's Disease, and stroke

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the increase in the aging population, the occurrence of neurological disorders is rising. Recently, stem cell therapy has garnered attention due to its convenient sourcing, minimal invasiveness, and capacity for directed differentiation. However, there are some disadvantages, such as poor quality control, safety assessments, and ethical and logistical issues. Consequently, scientists have started to shift their attention from stem cells to extracellular vesicles due to their similar structures and properties. Beyond these parallels, extracellular vesicles can enhance biocompatibility, facilitate easy traversal of barriers, and minimize side effects. Furthermore, stem cell-derived extracellular vesicles can be engineered to load drugs and modify surfaces to enhance treatment outcomes. In this review, we summarize the functions of native stem cell-derived extracellular vesicles, subsequently review the strategies for the engineering of stem cell-derived extracellular vesicles and their applications in Alzheimer's disease, Parkinson's disease, and stroke, and discuss the challenges and solutions associated with the clinical translation of stem cell-derived extracellular vesicles.

          Related collections

          Most cited references174

          • Record: found
          • Abstract: found
          • Article: not found

          The biology, function, and biomedical applications of exosomes

          The study of extracellular vesicles (EVs) has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and in organ homeostasis and disease. Exosomes, with an average diameter of ~100 nanometers, are a subset of EVs. The biogenesis of exosomes involves their origin in endosomes, and subsequent interactions with other intracellular vesicles and organelles generate the final content of the exosomes. Their diverse constituents include nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their cell of origin. In various diseases, exosomes offer a window into altered cellular or tissue states, and their detection in biological fluids potentially offers a multicomponent diagnostic readout. The efficient exchange of cellular components through exosomes can inform their applied use in designing exosome-based therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Shedding light on the cell biology of extracellular vesicles

            Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively. They are present in biological fluids and are involved in multiple physiological and pathological processes. Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material. Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis. However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diagnosis and Treatment of Parkinson Disease: A Review

              Parkinson disease is the most common form of parkinsonism, a group of neurological disorders with Parkinson disease-like movement problems such as rigidity, slowness, and tremor. More than 6 million individuals worldwide have Parkinson disease.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2024
                27 May 2024
                : 14
                : 8
                : 3358-3384
                Affiliations
                [1 ]National Vaccine Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China.
                [2 ]Capital Medical University, 10 Xitoutiao, Youanmenwai Street, Beijing 100069, China.
                [3 ]State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
                Author notes
                ✉ Corresponding authors: Wenlin An, Ph.D., E-mail: anwenlin@ 123456sinopharm.com ; Zhiguo Lu, Ph.D., E-mail: zglu18@ 123456ipe.ac.cn .

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov14p3358
                10.7150/thno.95953
                11155406
                fcddd4a8-8af7-4f86-84fb-5d7489973df1
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 5 March 2024
                : 23 May 2024
                Categories
                Review

                Molecular medicine
                stem cell,extracellular vesicle,neurological disease,drug delivery,clinical translation

                Comments

                Comment on this article