47
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Why publish your research Open Access with G3: Genes|Genomes|Genetics?

      Learn more and submit today!

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Null Alleles and Deletions from SNP Genotypes for an Intercross Between Domestic and Wild Chickens

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We analyzed genotypes from ~10K single-nucleotide polymorphisms (SNPs) in two families of an F 2 intercross between Red Junglefowl and White Leghorn chickens. Possible null alleles were found by patterns of incompatible and missing genotypes. We estimated that 2.6% of SNPs had null alleles compared with 2.3% with genotyping errors and that 40% of SNPs in which a parent and offspring were genotyped as different homozygotes had null alleles. Putative deletions were identified by null alleles at adjacent markers. We found two candidate deletions that were supported by fluorescence intensity data from a 60K SNP chip. One of the candidate deletions was from the Red Junglefowl, and one was present in both the Red Junglefowl and White Leghorn. Both candidate deletions spanned protein-coding regions and were close to a previously detected quantitative trait locus affecting body weight in this population. This study demonstrates that the ~50K SNP genotyping arrays now available for several agricultural species can be used to identify null alleles and deletions in data from large families. We suggest that our approach could be a useful complement to linkage analysis in experimental crosses.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Integrated detection and population-genetic analysis of SNPs and copy number variation.

          Dissecting the genetic basis of disease risk requires measuring all forms of genetic variation, including SNPs and copy number variants (CNVs), and is enabled by accurate maps of their locations, frequencies and population-genetic properties. We designed a hybrid genotyping array (Affymetrix SNP 6.0) to simultaneously measure 906,600 SNPs and copy number at 1.8 million genomic locations. By characterizing 270 HapMap samples, we developed a map of human CNV (at 2-kb breakpoint resolution) informed by integer genotypes for 1,320 copy number polymorphisms (CNPs) that segregate at an allele frequency >1%. More than 80% of the sequence in previously reported CNV regions fell outside our estimated CNV boundaries, indicating that large (>100 kb) CNVs affect much less of the genome than initially reported. Approximately 80% of observed copy number differences between pairs of individuals were due to common CNPs with an allele frequency >5%, and more than 99% derived from inheritance rather than new mutation. Most common, diallelic CNPs were in strong linkage disequilibrium with SNPs, and most low-frequency CNVs segregated on specific SNP haplotypes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-wide association study of copy number variation in 16,000 cases of eight common diseases and 3,000 shared controls

            Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to play an important role in genetic susceptibility to common disease. To address this we undertook a large direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed ~19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated ~50% of all common CNVs larger than 500bp. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell-lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease, IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis, and type 1 diabetes, and TSPAN8 for type 2 diabetes, though in each case the locus had previously been identified in SNP-based studies, reflecting our observation that the majority of common CNVs which are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs which can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease.

              Following recent success in genome-wide association studies, a critical focus of human genetics is to understand how genetic variation at implicated loci influences cellular and disease processes. Crohn's disease (CD) is associated with SNPs around IRGM, but coding-sequence variation has been excluded as a source of this association. We identified a common, 20-kb deletion polymorphism, immediately upstream of IRGM and in perfect linkage disequilibrium (r2 = 1.0) with the most strongly CD-associated SNP, that causes IRGM to segregate in the population with two distinct upstream sequences. The deletion (CD risk) and reference (CD protective) haplotypes of IRGM showed distinct expression patterns. Manipulation of IRGM expression levels modulated cellular autophagy of internalized bacteria, a process implicated in CD. These results suggest that the CD association at IRGM arises from an alteration in IRGM regulation that affects the efficacy of autophagy and identify a common deletion polymorphism as a likely causal variant.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                1 August 2013
                August 2013
                : 3
                : 8
                : 1253-1260
                Affiliations
                [* ]Department of Cell and Molecular Biology, Uppsala University, Uppsala, SE-75124, Sweden
                []Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, SE-756 51, Sweden
                []Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
                Author notes

                Supporting information is available online at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.006643/-/DC1

                [1]

                Present address: Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, United Kingdom.

                [2 ]Corresponding author: Swedish University of Agricultural Sciences, Department of Animal Breeding and Genetics, Box 7023, SE-75007 Uppsala, Sweden. E-mail: anna.johansson@ 123456slu.se
                Article
                GGG_006643
                10.1534/g3.113.006643
                3737165
                23708300
                fcd0d431-511d-47ea-a03b-32b1d0f8322a
                Copyright © 2013 Crooks et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 December 2012
                : 14 May 2013
                Page count
                Pages: 8
                Categories
                Investigations
                Custom metadata
                v1

                Genetics
                null allele,deletion,chicken
                Genetics
                null allele, deletion, chicken

                Comments

                Comment on this article