Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tibetan tea reduces obesity brought on by a high‐fat diet and modulates gut flora in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has been shown that Tibetan tea (TT) inhibits obesity and controls lipid metabolism. The fundamental processes by which TT prevents obesity are yet entirely unknown. Consequently, this research aimed to ascertain if TT may prevent obesity by modifying the gut flora. Our research demonstrated that TT prevented mice from gaining weight and accumulating fat due to the high‐fat diet (HFD), decreased levels of blood total cholesterol (TC), triglycerides (TG), and low‐density lipoprotein cholesterol (LDL‐C), and raised levels of high‐density lipoprotein cholesterol (HDL‐C). Adipogenesis‐related genes such as acetyl‐Coenzyme A carboxylase 1 (ACC1, LOC107476), fatty acid synthase (Fas, LOC14104), sterol regulatory element‐binding protein‐1c (SREBP‐1c, LOC20787), CCAAT/enhancer‐binding protein α (C/EBPα, LOC12606), stearoyl‐CoA desaturase 1 (SCD1, LOC20249), and peroxisome proliferator‐activated receptor γ (PPARγ, LOC19016) had their expression downregulated by lowering the Firmicutes/Bacteroidetes ( F/B) ratio and controlling the number of certain gut bacteria. TT also alleviated HFD‐induced abnormalities of the gut microbiota. The Muribaculaceae, Lachnospiraceae NK4A136_group, Alistipes, and Odoribacter families were identified as the major beneficial gut microorganisms using Spearman's correlation analysis. Fecal microbiota transplantation (FMT) demonstrated that TT's anti‐obesity and gut microbiota‐modulating benefits might be transmitted to mice on an HFD, demonstrating that one of TT's targets for preventing obesity is the gut microbiota. TT also increased the amount of short‐chain fatty acids (SCFAs) in the feces, including acetic, propionic, and butyric acids. These results indicate the possible development of TT as a prebiotic to combat obesity and associated disorders. These results suggest that TT may act as a prebiotic against obesity and its associated diseases.

          Abstract

          We were able to demonstrate that Tibetan tea (TT) dramatically inhibited high‐fat diet‐induced weight gain, fat accumulation, hyperglycemia, and hyperlipidemia in mice, as well as control the expression of genes involved in lipid metabolism. The way that TT controls the gut microbiota produces short‐chain fatty acids and controls the expression of genes involved in lipid synthesis may be responsible for its positive effects on obesity. Our research gave TT's potential as a functional beverage for the prevention and treatment of obesity a new direction.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Diet rapidly and reproducibly alters the human gut microbiome

          Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut 1–5 , but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals 2 , reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease 6 . In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.

            A compelling set of links between the composition of the gut microbiota, the host diet, and host physiology has emerged. Do these links reflect cause-and-effect relationships, and what might be their mechanistic basis? A growing body of work implicates microbially produced metabolites as crucial executors of diet-based microbial influence on the host. Here, we will review data supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs). SCFAs can directly activate G-coupled-receptors, inhibit histone deacetylases, and serve as energy substrates. They thus affect various physiological processes and may contribute to health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication

              A substantial body of evidence supports that the gut microbiota plays a pivotal role in the regulation of metabolic, endocrine and immune functions. In recent years, there has been growing recognition of the involvement of the gut microbiota in the modulation of multiple neurochemical pathways through the highly interconnected gut-brain axis. Although amazing scientific breakthroughs over the last few years have expanded our knowledge on the communication between microbes and their hosts, the underpinnings of microbiota-gut-brain crosstalk remain to be determined. Short-chain fatty acids (SCFAs), the main metabolites produced in the colon by bacterial fermentation of dietary fibers and resistant starch, are speculated to play a key role in neuro-immunoendocrine regulation. However, the underlying mechanisms through which SCFAs might influence brain physiology and behavior have not been fully elucidated. In this review, we outline the current knowledge about the involvement of SCFAs in microbiota-gut-brain interactions. We also highlight how the development of future treatments for central nervous system (CNS) disorders can take advantage of the intimate and mutual interactions of the gut microbiota with the brain by exploring the role of SCFAs in the regulation of neuro-immunoendocrine function.
                Bookmark

                Author and article information

                Contributors
                hegang@cdu.edu.cn
                jmee@cdu.edu.cn
                Journal
                Food Sci Nutr
                Food Sci Nutr
                10.1002/(ISSN)2048-7177
                FSN3
                Food Science & Nutrition
                John Wiley and Sons Inc. (Hoboken )
                2048-7177
                07 August 2023
                October 2023
                : 11
                : 10 ( doiID: 10.1002/fsn3.v11.10 )
                : 6582-6595
                Affiliations
                [ 1 ] Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University Chengdu China
                [ 2 ] Sichuan Jiang's Tibetan Tea Co., LTD Ya'an China
                Author notes
                [*] [* ] Correspondence

                Gang He and Wei Liu, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.

                Email: hegang@ 123456cdu.edu.cn and jmee@ 123456cdu.edu.cn

                Author information
                https://orcid.org/0000-0001-5026-1493
                https://orcid.org/0000-0002-6839-6844
                Article
                FSN33607 FSN3-2023-01-0095.R2
                10.1002/fsn3.3607
                10563754
                37823111
                fcca8bc6-55c4-441c-86b9-468e43e003a1
                © 2023 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 July 2023
                : 18 January 2023
                : 18 July 2023
                Page count
                Figures: 9, Tables: 4, Pages: 14, Words: 8844
                Funding
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Award ID: 31870655
                Funded by: Sichuan Province Science and Technology Support Program , doi 10.13039/100012542;
                Award ID: 2019YFH0054
                Award ID: 2020YFH0205
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                October 2023
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.3.4 mode:remove_FC converted:10.10.2023

                gut flora,high‐fat diet,obesity,short‐chain fatty acids,tibetan tea

                Comments

                Comment on this article