57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ion Channel Regulation by Protein Palmitoylation*

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein S-palmitoylation, the reversible thioester linkage of a 16-carbon palmitate lipid to an intracellular cysteine residue, is rapidly emerging as a fundamental, dynamic, and widespread post-translational mechanism to control the properties and function of ligand- and voltage-gated ion channels. Palmitoylation controls multiple stages in the ion channel life cycle, from maturation to trafficking and regulation. An emerging concept is that palmitoylation is an important determinant of channel regulation by other signaling pathways. The elucidation of enzymes controlling palmitoylation and developments in proteomics tools now promise to revolutionize our understanding of this fundamental post-translational mechanism in regulating ion channel physiology.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          CSS-Palm 2.0: an updated software for palmitoylation sites prediction.

          Protein palmitoylation is an essential post-translational lipid modification of proteins, and reversibly orchestrates a variety of cellular processes. Identification of palmitoylated proteins with their sites is the foundation for understanding molecular mechanisms and regulatory roles of palmitoylation. Contrasting to the labor-intensive and time-consuming experimental approaches, in silico prediction of palmitoylation sites has attracted much attention as a popular strategy. In this work, we updated our previous CSS-Palm into version 2.0. An updated clustering and scoring strategy (CSS) algorithm was employed with great improvement. The leave-one-out validation and 4-, 6-, 8- and 10-fold cross-validations were adopted to evaluate the prediction performance of CSS-Palm 2.0. Also, an additional new data set not included in training was used to test the robustness of CSS-Palm 2.0. By comparison, the performance of CSS-Palm was much better than previous tools. As an application, we performed a small-scale annotation of palmitoylated proteins in budding yeast. The online service and local packages of CSS-Palm 2.0 were freely available at: http://bioinformatics.lcd-ustc.org/css_palm.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane.

            Many signaling, cytoskeletal, and transport proteins have to be localized to the plasma membrane (PM) in order to carry out their function. We surveyed PM-targeting mechanisms by imaging the subcellular localization of 125 fluorescent protein-conjugated Ras, Rab, Arf, and Rho proteins. Out of 48 proteins that were PM-localized, 37 contained clusters of positively charged amino acids. To test whether these polybasic clusters bind negatively charged phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] lipids, we developed a chemical phosphatase activation method to deplete PM PI(4,5)P2. Unexpectedly, proteins with polybasic clusters dissociated from the PM only when both PI(4,5)P2 and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] were depleted, arguing that both lipid second messengers jointly regulate PM targeting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protein palmitoylation in neuronal development and synaptic plasticity.

              Protein palmitoylation, a classical and common lipid modification, regulates diverse aspects of neuronal protein trafficking and function. The reversible nature of palmitoylation provides a potential general mechanism for protein shuttling between intracellular compartments. The recent discovery of palmitoylating enzymes--a large DHHC (Asp-His-His-Cys) protein family--and the development of new proteomic and imaging methods have accelerated palmitoylation analysis. It is becoming clear that individual DHHC enzymes generate and maintain the specialized compartmentalization of substrates in polarized neurons. Here, we discuss the regulatory mechanisms for dynamic protein palmitoylation and the emerging roles of protein palmitoylation in various aspects of pathophysiology, including neuronal development and synaptic plasticity.
                Bookmark

                Author and article information

                Journal
                J Biol Chem
                jbc
                jbc
                JBC
                The Journal of Biological Chemistry
                American Society for Biochemistry and Molecular Biology (9650 Rockville Pike, Bethesda, MD 20814, U.S.A. )
                0021-9258
                1083-351X
                18 March 2011
                7 January 2011
                7 January 2011
                : 286
                : 11
                : 8709-8716
                Affiliations
                [1]From the Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
                Author notes
                [1 ] To whom correspondence should be addressed. E-mail: mike.shipston@ 123456ed.ac.uk .
                Article
                R110.210005
                10.1074/jbc.R110.210005
                3058972
                21216969
                fcb97124-ddae-4621-9f2d-ee0344bdac4d
                © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

                Author's Choice—Final version full access.

                Creative Commons Attribution Non-Commercial License applies to Author Choice Articles

                History
                Categories
                Minireviews

                Biochemistry
                membrane trafficking,signal transduction,sodium channels,ligand-gated ion channel,ion channels,palmitoylation,acylation,post-translational modification,potassium channels,calcium channels

                Comments

                Comment on this article