18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Purified particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a dimer with both mononuclear copper and a copper-containing cluster

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Particulate methane monooxygenase (pMMO) is a membrane-bound enzyme that catalyzes the oxidation of methane to methanol in methanotropic bacteria. Understanding how this enzyme hydroxylates methane at ambient temperature and pressure is of fundamental chemical and potential commercial importance. Difficulties in solubilizing and purifying active pMMO have led to conflicting reports regarding its biochemical and biophysical properties, however. We have purified pMMO from Methylococcus capsulatus (Bath) and detected activity. The purified enzyme has a molecular mass of approximately 200 kDa, probably corresponding to an alpha(2)beta(2)gamma(2) polypeptide arrangement. Each 200-kDa pMMO complex contains 4.8 +/- 0.8 copper ions and 1.5 +/- 0.7 iron ions. Electron paramagnetic resonance spectroscopic parameters corresponding to 40-60% of the total copper are consistent with the presence of a mononuclear type 2 copper site. X-ray absorption near edge spectra indicate that purified pMMO is a mixture of Cu(I) and Cu(II) oxidation states. Finally, extended x-ray absorption fine structure data are best fit with oxygennitrogen ligands and a 2.57-A Cu-Cu interaction, providing direct evidence for a copper-containing cluster in pMMO.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form.

          A discontinuous electrophoretic system for the isolation of membrane proteins from acrylamide gels has been developed using equipment for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Coomassie dyes were introduced to induce a charge shift on the proteins and aminocaproic acid served to improve solubilization of membrane proteins. Solubilized mitochondria or extracts of heart muscle tissue, lymphoblasts, yeast, and bacteria were applied to the gels. From cells containing mitochondria, all the multiprotein complexes of the oxidative phosphorylation system were separated within one gel. The complexes were resolved into the individual polypeptides by second-dimension Tricine-SDS-PAGE or extracted without SDS for functional studies. The recovery of all respiratory chain complexes was almost quantitative. The percentage recovery of functional activity depended on the respective protein complex studied and was zero for some complexes, but almost quantitative for others. The system is especially useful for small scale purposes, e.g., separation of radioactively labeled membrane proteins, N-terminal protein sequencing, preparation of proteins for immunization, and diagnostic studies of inborn neuromuscular diseases.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Enrichment, isolation and some properties of methane-utilizing bacteria.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Platinum catalysts for the high-yield oxidation of methane to a methanol derivative

              Platinum catalysts are reported for the direct, low-temperature, oxidative conversion of methane to a methanol derivative at greater than 70 percent one-pass yield based on methane. The catalysts are platinum complexes derived from the bidiazine ligand family that are stable, active, and selective for the oxidation of a carbon-hydrogen bond of methane to produce methyl esters. Mechanistic studies show that platinum(II) is the most active oxidation state of platinum for reaction with methane, and are consistent with reaction proceeding through carbon-hydrogen bond activation of methane to generate a platinum-methyl intermediate that is oxidized to generate the methyl ester product.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                April 01 2003
                March 12 2003
                April 01 2003
                : 100
                : 7
                : 3820-3825
                Article
                10.1073/pnas.0536703100
                153005
                12634423
                fc5ea6d6-1ff3-4756-8841-7b545e07db60
                © 2003
                History

                Comments

                Comment on this article