2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Response Flexibility: The Role of the Lateral Habenula

      systematic-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability to make appropriate decisions that result in an optimal outcome is critical for survival. This process involves assessing the environment as well as integrating prior knowledge about the environment with information about one’s current internal state. There are many neural structures that play critical roles in mediating these processes, but it is not yet known how such information coalesces to influence behavioral output. The lateral habenula (LHb) has often been cited as a structure critical for adaptive and flexible responding when environmental contexts and internal state changes. A challenge, however, has been understanding how LHb promotes response flexibility. In this review, we hypothesize that the LHb enables flexible responding following the integration of context memory and internal state information by signaling downstream brainstem structures known to drive hippocampal theta. In this way, animals respond more flexibly in a task situation not because the LHb selects a particular action, but rather because LHb enhances a hippocampal neural state that is often associated with greater attention, arousal, and exploration. In freely navigating animals, these are essential conditions that are needed to discover and implement appropriate alternative choices and behaviors. As a corollary to our hypothesis, we describe short- and intermediate-term functions of the LHb. Finally, we discuss the effects on the behavior of LHb dysfunction in short- and intermediate-timescales, and then suggest that new therapies may act on the LHb to alleviate the behavioral impairments following long-term LHb disruption.

          Related collections

          Most cited references267

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide atlas of gene expression in the adult mouse brain.

          Molecular approaches to understanding the functional circuitry of the nervous system promise new insights into the relationship between genes, brain and behaviour. The cellular diversity of the brain necessitates a cellular resolution approach towards understanding the functional genomics of the nervous system. We describe here an anatomically comprehensive digital atlas containing the expression patterns of approximately 20,000 genes in the adult mouse brain. Data were generated using automated high-throughput procedures for in situ hybridization and data acquisition, and are publicly accessible online. Newly developed image-based informatics tools allow global genome-scale structural analysis and cross-correlation, as well as identification of regionally enriched genes. Unbiased fine-resolution analysis has identified highly specific cellular markers as well as extensive evidence of cellular heterogeneity not evident in classical neuroanatomical atlases. This highly standardized atlas provides an open, primary data resource for a wide variety of further studies concerning brain organization and function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Theta oscillations in the hippocampus.

            Theta oscillations represent the "on-line" state of the hippocampus. The extracellular currents underlying theta waves are generated mainly by the entorhinal input, CA3 (Schaffer) collaterals, and voltage-dependent Ca(2+) currents in pyramidal cell dendrites. The rhythm is believed to be critical for temporal coding/decoding of active neuronal ensembles and the modification of synaptic weights. Nevertheless, numerous critical issues regarding both the generation of theta oscillations and their functional significance remain challenges for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamic predictions: oscillations and synchrony in top-down processing.

              Classical theories of sensory processing view the brain as a passive, stimulus-driven device. By contrast, more recent approaches emphasize the constructive nature of perception, viewing it as an active and highly selective process. Indeed, there is ample evidence that the processing of stimuli is controlled by top-down influences that strongly shape the intrinsic dynamics of thalamocortical networks and constantly create predictions about forthcoming sensory events. We discuss recent experiments indicating that such predictions might be embodied in the temporal structure of both stimulus-evoked and ongoing activity, and that synchronous oscillations are particularly important in this process. Coherence among subthreshold membrane potential fluctuations could be exploited to express selective functional relationships during states of expectancy or attention, and these dynamic patterns could allow the grouping and selection of distributed neuronal responses for further processing.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Behav Neurosci
                Front Behav Neurosci
                Front. Behav. Neurosci.
                Frontiers in Behavioral Neuroscience
                Frontiers Media S.A.
                1662-5153
                04 April 2022
                2022
                : 16
                : 852235
                Affiliations
                [1] 1Department of Psychology, University of Washington , Seattle, WA, United States
                [2] 2Graduate Program in Neuroscience, University of Washington , Seattle, WA, United States
                Author notes

                Edited by: Mathieu Wolff, Centre National de la Recherche Scientifique (CNRS), France

                Reviewed by: Thomas Jhou, Medical University of South Carolina, United States; Robert R. Rozeske, University of Toronto, Canada

                *Correspondence: Sheri J. Y. Mizumori mizumori@ 123456uw.edu

                Specialty section: This article was submitted to Learning and Memory, a section of the Frontiers in Behavioral Neuroscience

                Article
                10.3389/fnbeh.2022.852235
                9014270
                35444521
                fc5d4387-08c3-4ae0-ad33-e879a1e17b9f
                Copyright © 2022 Hones and Mizumori.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 January 2022
                : 01 March 2022
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 267, Pages: 20, Words: 20613
                Funding
                Funded by: Office of Research Central, University of Washington, doi 10.13039/100013350;
                Categories
                Behavioral Neuroscience
                Systematic Review

                Neurosciences
                behavioral adaptation,lateral habenula,motivation,context memory,hippocampus,medial prefrontal cortex

                Comments

                Comment on this article