47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy

      review-article
      * , *
      Cancers
      MDPI
      chimeric antigen receptor (CAR), immunotherapy, cancer, CD4 T cells, CD8 T cells

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy––a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4 + subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh) and CD8 + memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.); intracellular markers (FOXP3); epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic); and these differences can be modulated to improve CAR-T therapy. In addition, CD4 + Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Fueling immunity: insights into metabolism and lymphocyte function.

          Lymphocytes face major metabolic challenges upon activation. They must meet the bioenergetic and biosynthetic demands of increased cell proliferation and also adapt to changing environmental conditions, in which nutrients and oxygen may be limiting. An emerging theme in immunology is that metabolic reprogramming and lymphocyte activation are intricately linked. However, why T cells adopt specific metabolic programs and the impact that these programs have on T cell function and, ultimately, immunological outcome remain unclear. Research on tumor cell metabolism has provided valuable insight into metabolic pathways important for cell proliferation and the influence of metabolites themselves on signal transduction and epigenetic programming. In this Review, we highlight emerging concepts regarding metabolic reprogramming in proliferating cells and discuss their potential impact on T cell fate and function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells.

            Chimeric antigen receptors (CARs) redirect T cell cytotoxicity against cancer cells, providing a promising approach to cancer immunotherapy. Despite extensive clinical use, the attributes of CAR co-stimulatory domains that impact persistence and resistance to exhaustion of CAR-T cells remain largely undefined. Here, we report the influence of signaling domains of coreceptors CD28 and 4-1BB on the metabolic characteristics of human CAR T cells. Inclusion of 4-1BB in the CAR architecture promoted the outgrowth of CD8(+) central memory T cells that had significantly enhanced respiratory capacity, increased fatty acid oxidation and enhanced mitochondrial biogenesis. In contrast, CAR T cells with CD28 domains yielded effector memory cells with a genetic signature consistent with enhanced glycolysis. These results provide, at least in part, a mechanistic insight into the differential persistence of CAR-T cells expressing 4-1BB or CD28 signaling domains in clinical trials and inform the design of future CAR T cell therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression.

              During malignant progression cancer cells tend to lose cell surface expression of MHC and other immune antigens, making them invisible to cytotoxic T cells and therefore inaccessible to tumor antigen-directed immunotherapy. Moreover, cancer cell variants that have lost antigen expression frequently contribute to deadly tumor relapses that occur following treatments that had been initially effective. In an effort to destroy antigen-loss cancer cells in tumors, we created a strategy that combines a chimeric antigen receptor (CAR)-redirected T-cell attack with an engineered local release of the cytokine interleukin 12 (IL-12), which recruits and reinforces macrophage function. Cytotoxic T cells were engineered to release inducible IL-12 upon CAR engagement in the tumor lesion, resulting in destruction of antigen-loss cancer cells that would normally escape. Importantly, elimination of the antigen-loss cancer cells was accompanied by an accumulation of activated macrophages that was critical to the antitumor response, because removing the macrophages abolished the response and restoring them reengaged it. Neutralizing TNF-α also abrogated the elimination of antigen-loss cancer cells, implying this proinflammatory factor in the process. Taken together, our results show how IL-12 supplementation by CAR T cells can target otherwise inaccessible tumor lesions, in a manner associated with reduced systemic toxicity, by recruiting and activating innate immune cells for a proinflammatory response. ©2011 AACR.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                15 March 2016
                March 2016
                : 8
                : 3
                : 36
                Affiliations
                Promab Biotechnologies, 2600 Hilltop Drive, Suite 320, Richmond, CA 94803, USA
                Author notes
                [* ]Correspondence: vita.gol@ 123456promab.com (V.G.); john@ 123456promab.com (L.W.); Tel.: +1-352-262-4846 (V.G.); +1-510-529-3021 (L.W.); Fax: +1-510-740-3625 (V.G. & L.W.)
                Article
                cancers-08-00036
                10.3390/cancers8030036
                4810120
                26999211
                fc3ed056-58d2-4f9c-98c4-896b69fbb5e6
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 January 2016
                : 10 March 2016
                Categories
                Review

                chimeric antigen receptor (car),immunotherapy,cancer,cd4 t cells,cd8 t cells

                Comments

                Comment on this article