56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Novel Clostridium perfringens Type E Strains That Carry an Iota Toxin Plasmid with a Functional Enterotoxin Gene

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clostridium perfringens enterotoxin (CPE) is a major virulence factor for human gastrointestinal diseases, such as food poisoning and antibiotic associated diarrhea. The CPE-encoding gene ( cpe) can be chromosomal or plasmid-borne. Recent development of conventional PCR cpe-genotyping assays makes it possible to identify cpe location (chromosomal or plasmid) in type A isolates. Initial studies for developing cpe genotyping assays indicated that all cpe-positive strains isolated from sickened patients were typable by cpe-genotypes, but surveys of C. perfringens environmental strains or strains from feces of healthy people suggested that this assay might not be useful for some cpe-carrying type A isolates. In the current study, a pulsed-field gel electrophoresis Southern blot assay showed that four cpe-genotype untypable isolates carried their cpe gene on a plasmid of ∼65 kb. Complete sequence analysis of the ∼65 kb variant cpe-carrying plasmid revealed no intact IS elements and a disrupted cytosine methyltransferase ( dcm) gene. More importantly, this plasmid contains a conjugative transfer region, a variant cpe gene and variant iota toxin genes. The toxin genes encoded by this plasmid are expressed based upon the results of RT-PCR assays. The ∼65 kb plasmid is closely related to the pCPF4969 cpe plasmid of type A isolates. MLST analyses indicated these isolates belong to a unique cluster of C. perfringens. Overall, these isolates carrying a variant functional cpe gene and iota toxin genes represent unique type E strains.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          SOSUI: classification and secondary structure prediction system for membrane proteins.

          The system SOSUI for the discrimination of membrane proteins and soluble ones together with the prediction of transmembrane helices was developed, in which the accuracy of the classification of proteins was 99% and the corresponding value for the transmembrane helix prediction was 97%. The system SOSUI is available through internet access: http://www.tuat.ac.jp/mitaku/sosui/. sosui@biophys.bio.tuat. ac.jp.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inactivation of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops.

            Previous epidemiological studies have implicated Clostridium perfringens enterotoxin (CPE) as a virulence factor in the pathogenesis of several gastrointestinal (GI) illnesses caused by C. perfringens type A isolates, including C. perfringens type A food poisoning and non-food-borne GI illnesses, such as antibiotic-associated diarrhoea and sporadic diarrhoea. To further evaluate the importance of CPE in the pathogenesis of these GI diseases, allelic exchange was used to construct cpe knock-out mutants in both SM101 (a derivative of a C. perfringens type A food poisoning isolate carrying a chromosomal cpe gene) and F4969 (a C. perfringens type A non-food-borne GI disease isolate carrying a plasmid-borne cpe gene). Western blot analyses confirmed that neither cpe knock-out mutant could express CPE during either sporulation or vegetative growth, and that this lack of CPE expression could be complemented by transforming these mutants with a recombinant plasmid carrying the wild-type cpe gene. When the virulence of the wild-type, mutant and complementing strains were compared in a rabbit ileal loop model, sporulating (but not vegetative) culture lysates of the wild-type isolates induced significant ileal loop fluid accumulation and intestinal histopathological damage, but neither sporulating nor vegetative culture lysates of the cpe knock-out mutants induced these intestinal effects. However, full sporulation-associated virulence could be restored by complementing these cpe knock-out mutants with a recombinant plasmid carrying the wild-type cpe gene, which confirms that the observed loss of virulence for the cpe knock-out mutants results from the specific inactivation of the cpe gene and the resultant loss of CPE expression. Therefore, in vivo analysis of our isogenic cpe mutants indicates that CPE expression is necessary for these two cpe-positive C. perfringens type A human disease isolates to cause GI effects in the culture lysate:ileal loop model system, a finding that supports CPE as an important virulence factor in GI diseases involving cpe-positive C. perfringens type A isolates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Occurrence of Clostridium perfringens beta2-toxin amongst animals, determined using genotyping and subtyping PCR assays.

              Clostridium perfringens isolates are currently classified into one of five biotypes on the basis of the differential production of alpha-, beta-, epsilon- and iota-toxins. Different biotypes are associated with different diseases of man and animals. In this study a multiple PCR assay was developed to detect the genes encoding these toxins. In addition, detection of the genes encoding the C. perfringens enterotoxin and beta2-toxin allowed subtyping of the bacteria. C. perfringens isolates taken from a variety of animals, including foals, piglets or lambs, were genotyped using this assay. Most of the isolates were found to be genotype A and the gene encoding beta2-toxin [corrected] was present in 50% of the isolates genotyped. A significant association between C. perfringens possessing the beta2-toxin gene and diarrhoea in piglets was identified, suggesting that beta2-toxin may play a key role in the pathogenesis of the disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                31 May 2011
                : 6
                : 5
                : e20376
                Affiliations
                [1 ]Department of Microbiology, Wakayama Medical University School of Medicine, Wakayama, Japan
                [2 ]Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
                [3 ]Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
                The University of Hong Kong, Hong Kong
                Author notes

                Conceived and designed the experiments: K. Miyamoto. Performed the experiments: K. Mimura NY K. Miyamoto MN. Analyzed the data: K. Miyamoto JL BM SA. Contributed reagents/materials/analysis tools: K. Mimura. Wrote the paper: K. Miyamoto JL BM.

                Article
                PONE-D-11-03820
                10.1371/journal.pone.0020376
                3105049
                21655254
                fbfac34b-52c7-4f37-bb37-a5b3a0b979ff
                Miyamoto et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 February 2011
                : 18 April 2011
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Microbiology
                Bacteriology
                Bacterial Taxonomy
                Bacterial Pathogens
                Medicine
                Infectious Diseases
                Bacterial Diseases
                Food poisoning by Clostridium perfringens

                Uncategorized
                Uncategorized

                Comments

                Comment on this article