Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quality beats frequency? Investigating students’ effort in learning when introducing technology in classrooms

      , , ,
      Contemporary Educational Psychology
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references175

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs

          Effect sizes are the most important outcome of empirical studies. Most articles on effect sizes highlight their importance to communicate the practical significance of results. For scientists themselves, effect sizes are most useful because they facilitate cumulative science. Effect sizes can be used to determine the sample size for follow-up studies, or examining effects across studies. This article aims to provide a practical primer on how to calculate and report effect sizes for t-tests and ANOVA's such that effect sizes can be used in a-priori power analyses and meta-analyses. Whereas many articles about effect sizes focus on between-subjects designs and address within-subjects designs only briefly, I provide a detailed overview of the similarities and differences between within- and between-subjects designs. I suggest that some research questions in experimental psychology examine inherently intra-individual effects, which makes effect sizes that incorporate the correlation between measures the best summary of the results. Finally, a supplementary spreadsheet is provided to make it as easy as possible for researchers to incorporate effect size calculations into their workflow.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            School Engagement: Potential of the Concept, State of the Evidence

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Missing data analysis: making it work in the real world.

              This review presents a practical summary of the missing data literature, including a sketch of missing data theory and descriptions of normal-model multiple imputation (MI) and maximum likelihood methods. Practical missing data analysis issues are discussed, most notably the inclusion of auxiliary variables for improving power and reducing bias. Solutions are given for missing data challenges such as handling longitudinal, categorical, and clustered data with normal-model MI; including interactions in the missing data model; and handling large numbers of variables. The discussion of attrition and nonignorable missingness emphasizes the need for longitudinal diagnostics and for reducing the uncertainty about the missing data mechanism under attrition. Strategies suggested for reducing attrition bias include using auxiliary variables, collecting follow-up data on a sample of those initially missing, and collecting data on intent to drop out. Suggestions are given for moving forward with research on missing data and attrition.
                Bookmark

                Author and article information

                Journal
                Contemporary Educational Psychology
                Contemporary Educational Psychology
                Elsevier BV
                0361476X
                April 2022
                April 2022
                : 69
                : 102042
                Article
                10.1016/j.cedpsych.2022.102042
                fbe5ad2f-61c9-44b0-8801-ce03a395c0ae
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article