17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Post-Translational Modifications of Fibrinogen on Clot Formation, Clot Structure, and Fibrinolysis : A Systematic Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Supplemental Digital Content is available in the text.

          Objective:

          Post-translational modifications of fibrinogen influence the occurrence and progression of thrombotic diseases. In this systematic review, we assessed the current literature on post-translational modifications of fibrinogen and their effects on fibrin formation and clot characteristics.

          Approach and Results:

          A systematic search of Medline, Embase, Cochrane Library, and Web of Science was performed to find studies reporting post-translational modifications of fibrinogen and the effects on clot formation and structure. Both in vitro studies and ex vivo studies using patient material were included. One hundred five articles were included, describing 11 different modifications of fibrinogen. For the best known and studied modifications, conclusions could be drawn about their effect on clot formation and structure. Oxidation, high levels of nitration, and glycosylation inhibit the rate of polymerization, resulting in dense clots with thinner fibers, while low levels of nitration increase the rate of polymerization. Glycation showed different results for polymerization, but fibrinolysis was found to be decreased, as a consequence of increased density and decreased permeability of clots. Acetylation also decreases the rate of polymerization but results in increased fiber diameters and susceptibility to fibrinolysis. Other modifications were studied less or contrasting results were found. Therefore, substantial gaps in the knowledge about the effect of post-translational modifications remain.

          Conclusions:

          Overall, post-translational modifications do affect clot formation and characteristics. More studies need to be performed to reveal the effects of all post-translational modifications and the effects on thrombotic diseases. Expanding the knowledge about modifications of fibrinogen can ultimately contribute to optimizing treatments for thrombotic diseases.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: found
          • Article: not found

          Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies.

          To determine the magnitude of the risk of incident cardiovascular disease (CVD; fatal and non-fatal), including acute myocardial infarction (MI), cerebrovascular accidents (CVA) and congestive heart failure (CHF), in patients with rheumatoid arthritis (RA) compared to the general population through a meta-analysis of controlled observational studies. The authors searched the Medline, Embase, LILACS and Cochrane databases from their inception to June 2011. Observational studies meeting the following criteria were included: (1) prespecified RA criteria; (2) predefined CVD criteria for incident CVD (MI, CVA or CHF); (3) a comparison group; and (4) RR estimates, 95% CI or data for calculating them. The authors calculated the pooled RR using the random-effects model and tested for heterogeneity using the bootstrap version of the Q statistic. Fourteen studies comprising 41 490 patients met the inclusion criteria. Overall, there was a 48% increased risk of incident CVD in patients with RA (pooled RR 1.48 (95% CI 1.36 to 1.62)). The risks of MI and CVA were increased by 68% (pooled RR 1.68 (95% CI 1.40 to 2.03)) and 41% (pooled RR 1.41 (95% CI 1.14 to 1.74)). The risk of CHF was assessed in only one study (RR 1.87 (95% CI 1.47 to 2.39)). Significant heterogeneity existed in all main analyses. Subgroup analyses showed that inception cohort studies were the only group that did not show a significantly increased risk of CVD (pooled RR 1.12 (95% CI 0.97 to 1.65)). Published data indicate that the risk of incident CVD is increased by 48% in patients with RA compared to the general population. Sample and cohort type influenced the estimates of RR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The world of protein acetylation.

            Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The origins of protein phosphorylation.

              The reversible phosphorylation of proteins is central to the regulation of most aspects of cell function but, even after the first protein kinase was identified, the general significance of this discovery was slow to be appreciated. Here I review the discovery of protein phosphorylation and give a personal view of the key findings that have helped to shape the field as we know it today.
                Bookmark

                Author and article information

                Journal
                Arterioscler Thromb Vasc Biol
                Arterioscler. Thromb. Vasc. Biol
                ATV
                Arteriosclerosis, Thrombosis, and Vascular Biology
                Lippincott Williams & Wilkins
                1079-5642
                1524-4636
                March 2020
                09 January 2020
                : 40
                : 3
                : 554-569
                Affiliations
                [1]From the Department of Hematology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
                Author notes
                Correspondence to: Moniek P.M. de Maat, PhD, Department of Hematology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000CA Rotterdam, The Netherlands. Email m.demaat@ 123456erasmusmc.nl
                Article
                00012
                10.1161/ATVBAHA.119.313626
                7043730
                31914791
                fbd4cb91-59ce-492a-8464-67b452fa84ec
                © 2020 The Authors.

                Arteriosclerosis, Thrombosis, and Vascular Biology is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.

                History
                : 24 October 2019
                : 19 December 2019
                Categories
                Brief Review
                Custom metadata
                TRUE
                VB

                fibrin,fibrinogen,fibrinolysis,polymerization,systematic review

                Comments

                Comment on this article