22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tryptophan Metabolism, Regulatory T Cells, and Inflammatory Bowel Disease: A Mini Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract resulting from the homeostasis imbalance of intestinal microenvironment, immune dysfunction, environmental and genetic factors, and so on. This disease is associated with multiple immune cells including regulatory T cells (Tregs). Tregs are a subset of T cells regulating the function of various immune cells to induce immune tolerance and maintain intestinal immune homeostasis. Tregs are correlated with the initiation and progression of IBD; therefore, strategies that affect the differentiation and function of Tregs may be promising for the prevention of IBD-associated pathology. It is worth noting that tryptophan (Trp) metabolism is effective in inducing the differentiation of Tregs through microbiota-mediated degradation and kynurenine pathway (KP), which is important for maintaining the function of Tregs. Interestingly, patients with IBD show Trp metabolism disorder in the pathological process, including changes in the concentrations of Trp and its metabolites and alteration in the activities of related catalytic enzymes. Thus, manipulation of Treg differentiation through Trp metabolism may provide a potential target for prevention of IBD. The purpose of this review is to highlight the relationship between Trp metabolism and Treg differentiation and the role of this interaction in the pathogenesis of IBD.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          The inhibitory cytokine IL-35 contributes to regulatory T-cell function.

          Regulatory T (T(reg)) cells are a critical sub-population of CD4+ T cells that are essential for maintaining self tolerance and preventing autoimmunity, for limiting chronic inflammatory diseases, such as asthma and inflammatory bowel disease, and for regulating homeostatic lymphocyte expansion. However, they also suppress natural immune responses to parasites and viruses as well as anti-tumour immunity induced by therapeutic vaccines. Although the manipulation of T(reg) function is an important goal of immunotherapy, the molecules that mediate their suppressive activity remain largely unknown. Here we demonstrate that Epstein-Barr-virus-induced gene 3 (Ebi3, which encodes IL-27beta) and interleukin-12 alpha (Il12a, which encodes IL-12alpha/p35) are highly expressed by mouse Foxp3+ (forkhead box P3) T(reg) cells but not by resting or activated effector CD4+ T (T(eff)) cells, and that an Ebi3-IL-12alpha heterodimer is constitutively secreted by T(reg) but not T(eff) cells. Both Ebi3 and Il12a messenger RNA are markedly upregulated in T(reg) cells co-cultured with T(eff) cells, thereby boosting Ebi3 and IL-12alpha production in trans. T(reg)-cell restriction of this cytokine occurs because Ebi3 is a downstream target of Foxp3, a transcription factor that is required for T(reg)-cell development and function. Ebi3-/- and Il12a-/- T(reg) cells have significantly reduced regulatory activity in vitro and fail to control homeostatic proliferation and to cure inflammatory bowel disease in vivo. Because these phenotypic characteristics are distinct from those of other IL-12 family members, this novel Ebi3-IL-12alpha heterodimeric cytokine has been designated interleukin-35 (IL-35). Ectopic expression of IL-35 confers regulatory activity on naive T cells, whereas recombinant IL-35 suppresses T-cell proliferation. Taken together, these data identify IL-35 as a novel inhibitory cytokine that may be specifically produced by T(reg) cells and is required for maximal suppressive activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease.

            Transforming growth factor-beta 1 (TGF-beta 1) is a multifunctional growth factor that has profound regulatory effects on many developmental and physiological processes. Disruption of the TGF-beta 1 gene by homologous recombination in murine embryonic stem cells enables mice to be generated that carry the disrupted allele. Animals homozygous for the mutated TGF-beta 1 allele show no gross developmental abnormalities, but about 20 days after birth they succumb to a wasting syndrome accompanied by a multifocal, mixed inflammatory cell response and tissue necrosis, leading to organ failure and death. TGF-beta 1-deficient mice may be valuable models for human immune and inflammatory disorders, including autoimmune diseases, transplant rejection and graft versus host reactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An Essential Role for Interleukin 10 in the Function of Regulatory T Cells That Inhibit Intestinal Inflammation

              A T helper cell type 1–mediated colitis develops in severe combined immunodeficient mice after transfer of CD45RBhigh CD4+ T cells and can be prevented by cotransfer of the CD45RBlow subset. The immune-suppressive activities of the CD45RBlow T cell population can be reversed in vivo by administration of an anti-transforming growth factor β antibody. Here we show that interleukin (IL)-10 is an essential mediator of the regulatory functions of the CD45RBlow population. This population isolated from IL-10–deficient (IL-10−/−) mice was unable to protect from colitis and when transferred alone to immune-deficient recipients induced colitis. Treatment with an anti–murine IL-10 receptor monoclonal antibody abrogated inhibition of colitis mediated by wild-type (WT) CD45RBlow CD4+ cells, suggesting that IL-10 was necessary for the effector function of the regulatory T cell population. Inhibition of colitis by WT regulatory T cells was not dependent on IL-10 production by progeny of the CD45RBhigh CD4+ cells, as CD45RBlow CD4+ cells from WT mice were able to inhibit colitis induced by IL-10−/− CD45RBhigh CD4+ cells. These findings provide the first clear evidence that IL-10 plays a nonredundant role in the functioning of regulatory T cells that control inflammatory responses towards intestinal antigens.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mediators Inflamm
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi
                0962-9351
                1466-1861
                2020
                12 June 2020
                : 2020
                : 9706140
                Affiliations
                1College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
                2Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
                3Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
                Author notes

                Guest Editor: Xiaolu Jin

                Author information
                https://orcid.org/0000-0003-1238-0621
                https://orcid.org/0000-0002-5491-0670
                Article
                10.1155/2020/9706140
                7306093
                32617076
                fbcfb56e-1b09-4324-881d-475119cbcf60
                Copyright © 2020 Xueyan Ding et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 April 2020
                : 26 May 2020
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 31672579
                Award ID: 31502075
                Award ID: 31270171
                Award ID: 31072136
                Award ID: 30771603
                Funded by: Ministry of Science and Technology of the People's Republic of China
                Award ID: 2017YFD0500203
                Award ID: 2016YFD0500905
                Funded by: Postgraduate Research & Practice Innovation Program of Jiangsu Province
                Award ID: KYCX19_2116
                Categories
                Review Article

                Immunology
                Immunology

                Comments

                Comment on this article