51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Human-mediated introductions of Australian acacias - a global experiment in biogeography : Wattles: a model group for invasion science

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Understanding individual human mobility patterns

          Despite their importance for urban planning, traffic forecasting, and the spread of biological and mobile viruses, our understanding of the basic laws governing human motion remains limited thanks to the lack of tools to monitor the time resolved location of individuals. Here we study the trajectory of 100,000 anonymized mobile phone users whose position is tracked for a six month period. We find that in contrast with the random trajectories predicted by the prevailing Levy flight and random walk models, human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time independent characteristic length scale and a significant probability to return to a few highly frequented locations. After correcting for differences in travel distances and the inherent anisotropy of each trajectory, the individual travel patterns collapse into a single spatial probability distribution, indicating that despite the diversity of their travel history, humans follow simple reproducible patterns. This inherent similarity in travel patterns could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning and agent based modeling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The scaling laws of human travel

            The dynamic spatial redistribution of individuals is a key driving force of various spatiotemporal phenomena on geographical scales. It can synchronise populations of interacting species, stabilise them, and diversify gene pools [1-3]. Human travelling, e.g. is responsible for the geographical spread of human infectious disease [4-9]. In the light of increasing international trade, intensified human mobility and an imminent influenza A epidemic [10] the knowledge of dynamical and statistical properties of human travel is thus of fundamental importance. Despite its crucial role, a quantitative assessment of these properties on geographical scales remains elusive and the assumption that humans disperse diffusively still prevails in models. Here we report on a solid and quantitative assessment of human travelling statistics by analysing the circulation of bank notes in the United States. Based on a comprehensive dataset of over a million individual displacements we find that dispersal is anomalous in two ways. First, the distribution of travelling distances decays as a power law, indicating that trajectories of bank notes are reminiscent of scale free random walks known as Levy flights. Secondly, the probability of remaining in a small, spatially confined region for a time T is dominated by algebraically long tails which attenuate the superdiffusive spread. We show that human travelling behaviour can be described mathematically on many spatiotemporal scales by a two parameter continuous time random walk model to a surprising accuracy and conclude that human travel on geographical scales is an ambivalent effectively superdiffusive process.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: a meta-analysis

                Bookmark

                Author and article information

                Journal
                Diversity and Distributions
                Wiley-Blackwell
                13669516
                September 2011
                September 2011
                : 17
                : 5
                : 771-787
                Article
                10.1111/j.1472-4642.2011.00824.x
                fbbf544b-054e-4625-9025-a04de896bc10
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article