19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Individualized Postnatal Growth Trajectories for Preterm Infants

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          New intrauterine growth curves based on United States data.

          The objective of this study was to create and validate new intrauterine weight, length, and head circumference growth curves using a contemporary, large, racially diverse US sample and compare with the Lubchenco curves. Data on 391 681 infants (Pediatrix Medical Group) aged 22 to 42 weeks at birth from 248 hospitals within 33 US states (1998-2006) for birth weight, length, head circumference, estimated gestational age, gender, and race were used. Separate subsamples were used to create and validate curves. Smoothed percentile curves (3rd to 97th) were created by the Lambda Mu Sigma (LMS) method. The validation sample was used to confirm representativeness of the curves. The new curves were compared with the Lubchenco curves. Final sample included 257 855 singleton infants (57.2% male) who survived to discharge. Gender-specific weight-, length-, and head circumference-for-age curves were created (n = 130 111) and successfully validated (n = 127 744). Small-for-gestational age and large-for-gestational age classifications using the Lubchenco curves differed significantly from the new curves for each gestational age (all P 36 weeks) who were large-for-gestational-age. The Lubchenco curves may not represent the current US population. The new intrauterine growth curves created and validated in this study, based on a contemporary, large, racially diverse US sample, provide clinicians with an updated tool for growth assessment in US NICUs. Research into the ability of the new definitions of small-for-gestational-age and large-for-gestational-age to identify high-risk infants in terms of short-term and long-term health outcomes is needed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The influence of birthweight and intrauterine environment on adiposity and fat distribution in later life.

            , I Rogers (2003)
            To review the literature on the association between birthweight and body mass index (BMI) and obesity in later life. Included in the review were papers appearing in Medline since 1966 and identified using the search terms obesity, body fat, waist, body constitution, birthweight and birth weight. Further papers were identified by examining bibliographies. There is good evidence that there is an association between birthweight and subsequent BMI and overweight in young adults and children, which is linear and positive in some studies and J- or U-shaped in others. The evidence is less strong for middle-aged subjects. Studies that have assessed lean body mass (LBM) and fat body mass have tended to find that birthweight is positively associated with LBM and negatively associated with relative adiposity. This suggests that the association between birthweight and BMI/overweight does not necessarily reflect increased adiposity at higher birthweights. On controlling for current body mass there is fairly consistent evidence of a negative association between birthweight and a central pattern of fat distribution as measured by central:peripheral skinfold ratios. It has been suggested that the prenatal period is a 'critical' period for the development of adiposity, but it is unclear how far associations between birthweight and subsequent body habitus are genetic in origin and how far they result from intrauterine 'programming'. Two lines of evidence would suggest that the association is predominantly genetic. Studies of monozygotic twins have found environmentally determined differences in birthweight to be unrelated to subsequent BMI, and the association between birthweight and BMI is substantially reduced on controlling for parental BMI. However, some evidence of an influence of intrauterine environment on later obesity comes from studies of subjects who were exposed in utero to the effects of diabetes, famine conditions or smoking. The reasons for the positive association between birthweight and BMI remain unclear. More studies including accurate measurement of body composition are needed to assess how far this relation is accounted for by changes in fat mass or by changes in lean mass. Studies with accurate measures of parental BMI would also be useful in assessing the importance of this confounder.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preterm birth and body composition at term equivalent age: a systematic review and meta-analysis.

              Infants born preterm are significantly lighter and shorter on reaching term equivalent age (TEA) than are those born at term, but the relation with body composition is less clear. We conducted a systematic review to assess the body composition at TEA of infants born preterm. The databases MEDLINE, Embase, CINAHL, HMIC, "Web of Science," and "CSA Conference Papers Index" were searched between 1947 and June 2011, with selective citation and reference searching. Included studies had to have directly compared measures of body composition at TEA in preterm infants and infants born full-term. Data on body composition, anthropometry, and birth details were extracted from each article. Eight studies (733 infants) fulfilled the inclusion criteria. Mean gestational age and weight at birth were 30.0 weeks and 1.18 kg in the preterm group and 39.6 weeks and 3.41 kg in the term group, respectively. Meta-analysis showed that the preterm infants had a greater percentage total body fat at TEA than those born full-term (mean difference, 3%; P = .03), less fat mass (mean difference, 50 g; P = .03), and much less fat-free mass (mean difference, 460 g; P < .0001). The body composition at TEA of infants born preterm is different than that of infants born at term. Preterm infants have less lean tissue but more similar fat mass. There is a need to determine whether improved nutritional management can enhance lean tissue acquisition, which indicates a need for measures of body composition in addition to routine anthropometry.
                Bookmark

                Author and article information

                Journal
                Journal of Parenteral and Enteral Nutrition
                Journal of Parenteral and Enteral Nutrition
                Wiley
                01486071
                August 2018
                August 2018
                February 08 2018
                : 42
                : 6
                : 1084-1092
                Affiliations
                [1 ]Department of Pediatrics; McMaster University; Hamilton Ontario Canada
                [2 ]Alberta Children's Hospital Research Institute; Department of Community Health Sciences; O'Brien Institute for Public Health; University of Calgary; Calgary Alberta Canada
                [3 ]Department of Mathematics and Statistics; McMaster University; Hamilton Ontario Canada
                [4 ]Department of Pediatrics; Paracelsus Medical School; General Hospital of Nuremberg; Nuremberg Germany
                Article
                10.1002/jpen.1138
                29419902
                fbb38c96-5db0-49aa-bd22-4f656b57d8f2
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article