7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Back to the Green Valley: How to Rejuvenate an S0 Galaxy through Minor Mergers

      Galaxies
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Structure of Cold Dark Matter Halos

          We use N-body simulations to investigate the structure of dark halos in the standard Cold Dark Matter cosmogony. Halos are excised from simulations of cosmologically representative regions and are resimulated individually at high resolution. We study objects with masses ranging from those of dwarf galaxy halos to those of rich galaxy clusters. The spherically averaged density profiles of all our halos can be fit over two decades in radius by scaling a simple ``universal'' profile. The characteristic overdensity of a halo, or equivalently its concentration, correlates strongly with halo mass in a way which reflects the mass dependence of the epoch of halo formation. Halo profiles are approximately isothermal over a large range in radii, but are significantly shallower than \(r^{-2}\) near the center and steeper than \(r^{-2}\) near the virial radius. Matching the observed rotation curves of disk galaxies requires disk mass-to-light ratios to increase systematically with luminosity. Further, it suggests that the halos of bright galaxies depend only weakly on galaxy luminosity and have circular velocities significantly lower than the disk rotation speed. This may explain why luminosity and dynamics are uncorrelated in observed samples of binary galaxies and of satellite/spiral systems. For galaxy clusters, our halo models are consistent both with the presence of giant arcs and with the observed structure of the intracluster medium, and they suggest a simple explanation for the disparate estimates of cluster core radii found by previous authors. Our results also highlight two shortcomings of the CDM model. CDM halos are too concentrated to be consistent with the halo parameters inferred for dwarf irregulars, and the predicted abundance of galaxy halos is larger than the observed abundance of galaxies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            N-body realizations of compound galaxies

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Gasoline: An adaptable implementation of TreeSPH

              The key algorithms and features of the Gasoline code for parallel hydrodynamics with self-gravity are described. Gasoline is an extension of the efficient Pkdgrav parallel N-body code using smoothed particle hydrodynamics. Accuracy measurements, performance analysis and tests of the code are presented. Recent successful Gasoline applications are summarized. These cover a diverse set of areas in astrophysics including galaxy clusters, galaxy formation and gas-giant planets. Future directions for gasdynamical simulations in astrophysics and code development strategies for tackling cutting edge problems are discussed.
                Bookmark

                Author and article information

                Journal
                Galaxies
                Galaxies
                MDPI AG
                2075-4434
                December 2015
                November 13 2015
                : 3
                : 4
                : 192-201
                Article
                10.3390/galaxies3040192
                fba95bc8-14fe-4bfb-9693-e453c5f18ad7
                © 2015

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article