30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional morphology of giant mole crab larvae: a possible case of defensive enrollment

      research-article
      , ,
      Zoological Letters
      BioMed Central
      Giant larva, Zoea, Hippidae, Defensive behavior, Museum material

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mole crabs (Hippidae) are morphologically distinct animals within Meiura, the “short-tailed” crustaceans. More precisely, Hippidae is an ingroup of Anomala, the group which includes squat lobsters, hermit crabs, and numerous “false” crabs. Within Meiura, Anomala is the sister group to Brachyura, which includes all true crabs. Most meiuran crustaceans develop through two specific larval phases. The first, pelagic one is the zoea phase, which is followed by the transitory megalopa phase (only one stage). Zoea larvae are rather small, usually having a total size of only a few millimeters. Zoea larvae of some hippidan species grow significantly larger, up to 15 mm in size, making them the largest known zoea larvae of all anomalan, and probably all meiuran, crustaceans. It has been suggested that such giant larvae may be adapted to a specific defensive strategy; i.e., enrollment. However, to date such giant larvae represent a rarity.

          Methods

          Eight specimens of large-sized hippidan larvae from museum collections were photographed with a Canon Rebel T3i digital camera under cross-polarized light. Additionally, one of the specimens was documented with a Keyence BZ-9000 fluorescence microscope. The specimen was subsequently dissected to document all appendages in detail. UV light (377 nm) was used for illumination, consistent with the specimen’s autofluorescence capacities. For high-resolution images, composite imaging was applied.

          Results

          All specimens differ in important aspects from all other known hippidan zoea larvae, and thus probably represent either previously unreported larvae or stages of known species, or larvae of unknown species. The sixth pleon segment articulates off the telson, a condition not previously reported in hippidan zoea larvae, but only for the next larva phase (megalopa). The larvae described here thus most likely represent the ultimate pelagic larval stages, or rare cases of ‘early megalopae’. The morphological features indicate that giant hippidan larvae perform defensive enrollment.

          Conclusions

          Our investigation indicates a larger morphological diversity of hippidan larvae than was known previously. Moreover, their assumed functional morphology, similar to the condition in certain stomatopod larvae, indicates a not yet directly observable behavior by these larvae, namely defensive enrollment. In a wider context, we are only just beginning to understand the ecological roles of many crustacean larvae.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s40851-016-0052-5) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Autofluorescence imaging, an excellent tool for comparative morphology.

          Here we present a set of methods for documenting (exo-)morphology by applying autofluorescence imaging. For arthropods, but also for other taxa, autofluorescence imaging combined with composite imaging is a fast documentation method with high-resolution capacities. Compared to conventional micro- and macrophotography, the illumination is much more homogenous, and structures are often better contrasted. Applying different wavelengths to the same object can additionally be used to enhance distinct structures. Autofluorescence imaging can be applied to dried and embedded specimens, but also directly on specimens within their storage liquid. This has an enormous potential for the documentation of rare specimens and especially type specimens without the need of preparation. Also for various fossils, autofluorescence can be used to enhance the contrast between the fossil and the matrix significantly, making even smallest details visible. 'Life-colour' fluorescence especially is identified as a technique with great potential. It provides additional information for which otherwise more complex methods would have to be applied. The complete range of differences and variations between fluorescence macrophotography and different types of fluorescence microscopy techniques are here explored and evaluated in detail. Also future improvements are suggested. In summary, autofluorescence imaging is a powerful, easy and fast-to-apply tool for morphological studies. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Morphology and function in the Cambrian Burgess Shale megacheiran arthropod Leanchoilia superlata and the application of a descriptive matrix

            Background Leanchoilia superlata is one of the best known arthropods from the middle Cambrian Burgess Shale of British Columbia. Here we re-describe the morphology of L. superlata and discuss its possible autecology. The re-description follows a standardized scheme, the descriptive matrix approach, designed to provide a template for descriptions of other megacheiran species. Results Our findings differ in several respects from previous interpretations. Examples include a more slender body; a possible hypostome; a small specialised second appendage, bringing the number of pairs of head appendages to four; a further sub-division of the great appendage, making it more similar to that of other megacheirans; and a complex joint of the exopod reflecting the arthropod’s swimming capabilities. Conclusions Different aspects of the morphology, for example, the morphology of the great appendage and the presence of a basipod with strong median armature on the biramous appendages indicate that L. superlata was an active and agile necto-benthic predator (not a scavenger or deposit feeder as previously interpreted).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda)

              Background The infraorder Anomura has long captivated the attention of evolutionary biologists due to its impressive morphological diversity and ecological adaptations. To date, 2500 extant species have been described but phylogenetic relationships at high taxonomic levels remain unresolved. Here, we reconstruct the evolutionary history—phylogeny, divergence times, character evolution and diversification—of this speciose clade. For this purpose, we sequenced two mitochondrial (16S and 12S) and three nuclear (H3, 18S and 28S) markers for 19 of the 20 extant families, using traditional Sanger and next-generation 454 sequencing methods. Molecular data were combined with 156 morphological characters in order to estimate the largest anomuran phylogeny to date. The anomuran fossil record allowed us to incorporate 31 fossils for divergence time analyses. Results Our best phylogenetic hypothesis (morphological + molecular data) supports most anomuran superfamilies and families as monophyletic. However, three families and eleven genera are recovered as para- and polyphyletic. Divergence time analysis dates the origin of Anomura to the Late Permian ~259 (224–296) MYA with many of the present day families radiating during the Jurassic and Early Cretaceous. Ancestral state reconstruction suggests that carcinization occurred independently 3 times within the group. The invasion of freshwater and terrestrial environments both occurred between the Late Cretaceous and Tertiary. Diversification analyses found the speciation rate to be low across Anomura, and we identify 2 major changes in the tempo of diversification; the most significant at the base of a clade that includes the squat-lobster family Chirostylidae. Conclusions Our findings are compared against current classifications and previous hypotheses of anomuran relationships. Many families and genera appear to be poly- or paraphyletic suggesting a need for further taxonomic revisions at these levels. A divergence time analysis provides key insights into the origins of major lineages and events and the timing of morphological (body form) and ecological (habitat) transitions. Living anomuran biodiversity is the product of 2 major changes in the tempo of diversification; our initial insights suggest that the acquisition of a crab-like form did not act as a key innovation.
                Bookmark

                Author and article information

                Contributors
                nicole.rudolf.nr@googlemail.com
                carolin.haug@palaeo-evo-devo.info
                joachim.haug@palaeo-evo-devo.info
                Journal
                Zoological Lett
                Zoological Lett
                Zoological Letters
                BioMed Central (London )
                2056-306X
                26 August 2016
                26 August 2016
                2016
                : 2
                : 1
                : 17
                Affiliations
                Ludwig-Maximilians-Universität München, Fakultät für Biologie, Biozentrum, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
                Article
                52
                10.1186/s40851-016-0052-5
                5000411
                fb9c283e-85f0-4b0e-a7b1-ac870ed20a2d
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 18 February 2016
                : 10 August 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: Ha 6300/3-1
                Award Recipient :
                Funded by: Bavarian Equal Opportunities Sponsorship of the LMU
                Funded by: EU Synthesys
                Award ID: DK-TAF-2591
                Award ID: FR-TAF-5181
                Award ID: FR-TAF-5175
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                giant larva,zoea,hippidae,defensive behavior,museum material

                Comments

                Comment on this article