4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic variants for prediction of gestational diabetes mellitus and modulation of susceptibility by a nutritional intervention based on a Mediterranean diet

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypothesis

          Gestational diabetes mellitus (GDM) entails a complex underlying pathogenesis, with a specific genetic background and the effect of environmental factors. This study examines the link between a set of single nucleotide polymorphisms (SNPs) associated with diabetes and the development of GDM in pregnant women with different ethnicities, and evaluates its potential modulation with a clinical intervention based on a Mediterranean diet.

          Methods

          2418 women from our hospital-based cohort of pregnant women screened for GDM from January 2015 to November 2017 (the San Carlos Cohort, randomized controlled trial for the prevention of GDM ISRCTN84389045 and real-world study ISRCTN13389832) were assessed for evaluation. Diagnosis of GDM was made according to the International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria. Genotyping was performed by IPLEX MassARRAY PCR using the Agena platform (Agena Bioscience, SanDiego, CA). 110 SNPs were selected for analysis based on selected literature references. Statistical analyses regarding patients’ characteristics were performed in SPSS (Chicago, IL, USA) version 24.0. Genetic association tests were performed using PLINK v.1.9 and 2.0 software. Bioinformatics analysis, with mapping of SNPs was performed using STRING, version 11.5.

          Results

          Quality controls retrieved a total 98 SNPs and 1573 samples, 272 (17.3%) with GDM and 1301 (82.7%) without GDM. 1104 (70.2%) were Caucasian (CAU) and 469 (29.8%) Hispanic (HIS). 415 (26.4%) were from the control group (CG), 418 (26.6%) from the nutritional intervention group (IG) and 740 (47.0%) from the real-world group (RW). 40 SNPs (40.8%) presented some kind of significant association with GDM in at least one of the genetic tests considered. The nutritional intervention presented a significant association with GDM, regardless of the variant considered. In CAU, variants rs4402960, rs7651090, IGF2BP2; rs1387153, rs10830963, MTNR1B; rs17676067, GLP2R; rs1371614, DPYSL5; rs5215, KCNJ1; and rs2293941, PDX1 were significantly associated with an increased risk of GDM, whilst rs780094, GCKR; rs7607980, COBLL1; rs3746750, SLC17A9; rs6048205, FOXA2; rs7041847, rs7034200, rs10814916, GLIS3; rs3783347, WARS; and rs1805087, MTR, were significantly associated with a decreased risk of GDM, In HIS, variants significantly associated with increased risk of GDM were rs9368222, CDKAL1; rs2302593, GIPR; rs10885122, ADRA2A; rs1387153, MTNR1B; rs737288, BACE2; rs1371614, DPYSL5; and rs2293941, PDX1, whilst rs340874, PROX1; rs2943634, IRS1; rs7041847, GLIS3; rs780094, GCKR; rs563694, G6PC2; and rs11605924, CRY2 were significantly associated with decreased risk for GDM.

          Conclusions

          We identify a core set of SNPs in their association with diabetes and GDM in a large cohort of patients from two main ethnicities from a single center. Identification of these genetic variants, even in the setting of a nutritional intervention, deems useful to design preventive and therapeutic strategies.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets

          Abstract Proteins and their functional interactions form the backbone of the cellular machinery. Their connectivity network needs to be considered for the full understanding of biological phenomena, but the available information on protein–protein associations is incomplete and exhibits varying levels of annotation granularity and reliability. The STRING database aims to collect, score and integrate all publicly available sources of protein–protein interaction information, and to complement these with computational predictions. Its goal is to achieve a comprehensive and objective global network, including direct (physical) as well as indirect (functional) interactions. The latest version of STRING (11.0) more than doubles the number of organisms it covers, to 5090. The most important new feature is an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input. For the enrichment analysis, STRING implements well-known classification systems such as Gene Ontology and KEGG, but also offers additional, new classification systems based on high-throughput text-mining as well as on a hierarchical clustering of the association network itself. The STRING resource is available online at https://string-db.org/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Second-generation PLINK: rising to the challenge of larger and richer datasets

            PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and research in population genetics. However, the steady accumulation of data from imputation and whole-genome sequencing studies has exposed a strong need for even faster and more scalable implementations of key functions. In addition, GWAS and population-genetic data now frequently contain probabilistic calls, phase information, and/or multiallelic variants, none of which can be represented by PLINK 1's primary data format. To address these issues, we are developing a second-generation codebase for PLINK. The first major release from this codebase, PLINK 1.9, introduces extensive use of bit-level parallelism, O(sqrt(n))-time/constant-space Hardy-Weinberg equilibrium and Fisher's exact tests, and many other algorithmic improvements. In combination, these changes accelerate most operations by 1-4 orders of magnitude, and allow the program to handle datasets too large to fit in RAM. This will be followed by PLINK 2.0, which will introduce (a) a new data format capable of efficiently representing probabilities, phase, and multiallelic variants, and (b) extensions of many functions to account for the new types of information. The second-generation versions of PLINK will offer dramatic improvements in performance and compatibility. For the first time, users without access to high-end computing resources can perform several essential analyses of the feature-rich and very large genetic datasets coming into use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Statistical significance for genomewide studies.

              With the increase in genomewide experiments and the sequencing of multiple genomes, the analysis of large data sets has become commonplace in biology. It is often the case that thousands of features in a genomewide data set are tested against some null hypothesis, where a number of features are expected to be significant. Here we propose an approach to measuring statistical significance in these genomewide studies based on the concept of the false discovery rate. This approach offers a sensible balance between the number of true and false positives that is automatically calibrated and easily interpreted. In doing so, a measure of statistical significance called the q value is associated with each tested feature. The q value is similar to the well known p value, except it is a measure of significance in terms of the false discovery rate rather than the false positive rate. Our approach avoids a flood of false positive results, while offering a more liberal criterion than what has been used in genome scans for linkage.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                13 October 2022
                2022
                : 13
                : 1036088
                Affiliations
                [1] 1 Endocrinology and Nutrition Department, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid , Madrid, Spain
                [2] 2 Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) , Madrid, Spain
                [3] 3 Facultad de Medicina. Medicina II Department, Universidad Complutense de Madrid , Madrid, Spain
                [4] 4 Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Madrid, Spain
                [5] 5 Patia Europe, Clinical Laboratory , San Sebastián, Spain
                [6] 6 Gynecology and Obstetrics Department, Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) , Madrid, Spain
                [7] 7 Clinical Laboratory Department Hospital Clínico Universitario San Carlos and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC) , Madrid, Spain
                Author notes

                Edited by: Sen Li, Beijing University of Chinese Medicine, China

                Reviewed by: Lin Han, The Affiliated Hospital of Qingdao University, China; Lixin Guo, Beijing Hospital, Peking University, China

                *Correspondence: Alfonso L. Calle-Pascual, acallepascual@ 123456hotmail.com ; Nuria García de la Torre, nurialobo@ 123456hotmail.com

                †These authors have contributed equally to this work and share first authorship

                This article was submitted to Clinical Diabetes, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2022.1036088
                9612917
                36313769
                fb838911-d753-4797-919b-bf87eabc1d53
                Copyright © 2022 Ramos-Levi, Barabash, Valerio, García de la Torre, Mendizabal, Zulueta, de Miguel, Diaz, Duran, Familiar, Jimenez, del Valle, Melero, Moraga, Herraiz, Torrejon, Arregi, Simón, Rubio and Calle-Pascual

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 September 2022
                : 20 September 2022
                Page count
                Figures: 2, Tables: 6, Equations: 0, References: 50, Pages: 18, Words: 14576
                Funding
                Funded by: Instituto de Salud Carlos III , doi 10.13039/501100004587;
                Funded by: Ministerio de Ciencia, Innovación y Universidades , doi 10.13039/100014440;
                Categories
                Endocrinology
                Original Research

                Endocrinology & Diabetes
                genetic risk variants,genetic polymorphisms,gestational diabetes mellitus,single nucleotide polymorphisms,snps,mediterranean diet,nutritional intervention

                Comments

                Comment on this article