4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Augmentation through Laundering Attacks for Audio Spoof Detection

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent text-to-speech (TTS) developments have made voice cloning (VC) more realistic, affordable, and easily accessible. This has given rise to many potential abuses of this technology, including Joe Biden's New Hampshire deepfake robocall. Several methodologies have been proposed to detect such clones. However, these methodologies have been trained and evaluated on relatively clean databases. Recently, ASVspoof 5 Challenge introduced a new crowd-sourced database of diverse acoustic conditions including various spoofing attacks and codec conditions. This paper is our submission to the ASVspoof 5 Challenge and aims to investigate the performance of Audio Spoof Detection, trained using data augmentation through laundering attacks, on the ASVSpoof 5 database. The results demonstrate that our system performs worst on A18, A19, A20, A26, and A30 spoofing attacks and in the codec and compression conditions of C08, C09, and C10.

          Related collections

          Author and article information

          Journal
          01 October 2024
          Article
          2410.01108
          fb5852f4-28d2-4a03-bf5e-39d5e68e74f7

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          eess.AS cs.AI cs.SD

          Artificial intelligence,Graphics & Multimedia design,Electrical engineering

          Comments

          Comment on this article