BAFF is an important prosurvival cytokine for mature B cells. However, previous studies have shown that BAFFR is already expressed at the immature B cell stage, and that the prosurvival protein Bcl-2 does not completely complement the B cell defects resulting from the absence of BAFFR or BAFF. Thus, we hypothesized that BAFF also functions to aid the differentiation of nonautoreactive immature B cells into transitional B cells and to promote their positive selection. We found that BAFFR is expressed at higher levels on nonautoreactive than on autoreactive immature B cells and that its expression correlates with that of surface IgM and with tonic BCR signaling. Our data indicate that BAFFR signaling enhances the generation of transitional CD23(-) B cells in vitro by increasing cell survival. In vivo, however, BAFFR signaling is dispensable for the generation of CD23(-) transitional B cells in the bone marrow, but it is important for the development of transitional CD23(-) T1 B cells in the spleen. Additionally, we show that BAFF is essential for the differentiation of CD23(-) into CD23(+) transitional B cells both in vitro and in vivo through a mechanism distinct from that mediating cell survival, but requiring tonic BCR signaling. In summary, our data indicate that BAFFR and tonic BCR signals cooperate to enable nonautoreactive immature B cells to differentiate into transitional B cells and to be positively selected into the naive B cell repertoire.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.