26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of Probiotics-Friendly Pig Production on Meat Quality and Physicochemical Characteristics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, the dietary effects of probiotics with a liquid application system on meat quality and physicochemical characteristics of pigs were evaluated. A total of 80 Landrace×Yorkshire×Duroc (LYD) 3-way crossbred pigs (average age 175±5 d) were assigned to a conventional farm and a probiotics farm equipped with a liquid probiotics application system (40 pigs in each farm). The two treatments were: CON (diet without probiotics) and PRO (diet with probiotics). Dietary probiotics decreased shear force in the longissimus muscle compared to the control group ( p<0.05). The treatment diet did not affect backfat thickness, carcass weight, meat color, cooking loss, water holding capacity (WHC), and drip loss. Dietary probiotics significantly reduced ash, salinity, and pH (at 5 and 15 d) ( p<0.05). There was no significant effect on thiobarbituric acid reactive substance (TBARS) values. Polyunsaturated fatty acid (PUFA) and omega fatty acids (ω3 and ω6) were significantly ( p<0.05) higher in the PRO group, whereas monounsaturated fatty acid (MUFA) was decreased. The free amino acid composition, serine, lysine, histidine, and arginine levels were significantly lower in the PRO than in the control group. The treatment group exhibited higher nucleotide compounds (hypoxanthine, inosine, GMP, IMP) than the controls. Also, levels of ascorbic acid and thiamin were significantly different ( p<0.05), while minerals were not significantly different between the groups. In conclusion, feeding of probiotics had effects on shear force, ash, salinity, pH, PUFA, and some amino acids which related to taste and flavor without any negative effects on the pigs’ carcass traits.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found

          Microsomal lipid peroxidation.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Zinc and immune function: the biological basis of altered resistance to infection.

            Zinc is known to play a central role in the immune system, and zinc-deficient persons experience increased susceptibility to a variety of pathogens. The immunologic mechanisms whereby zinc modulates increased susceptibility to infection have been studied for several decades. It is clear that zinc affects multiple aspects of the immune system, from the barrier of the skin to gene regulation within lymphocytes. Zinc is crucial for normal development and function of cells mediating nonspecific immunity such as neutrophils and natural killer cells. Zinc deficiency also affects development of acquired immunity by preventing both the outgrowth and certain functions of T lymphocytes such as activation, Th1 cytokine production, and B lymphocyte help. Likewise, B lymphocyte development and antibody production, particularly immunoglobulin G, is compromised. The macrophage, a pivotal cell in many immunologic functions, is adversely affected by zinc deficiency, which can dysregulate intracellular killing, cytokine production, and phagocytosis. The effects of zinc on these key immunologic mediators is rooted in the myriad roles for zinc in basic cellular functions such as DNA replication, RNA transcription, cell division, and cell activation. Apoptosis is potentiated by zinc deficiency. Zinc also functions as an antioxidant and can stabilize membranes. This review explores these aspects of zinc biology of the immune system and attempts to provide a biological basis for the altered host resistance to infections observed during zinc deficiency and supplementation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp.

              The present paper provides an overview on the use of probiotic organisms as live supplements, with particular emphasis on Lactobacillus acidophilus and Bifidobacterium spp. The therapeutic potential of these bacteria in fermented dairy products is dependent on their survival during manufacture and storage. Probiotic bacteria are increasingly used in food and pharmaceutical applications to balance disturbed intestinal microflora and related dysfunction of the human gastrointestinal tract. Lactobacillus acidophilus and Bifidobacterium spp. have been reported to be beneficial probiotic organisms that provide excellent therapeutic benefits. The biological activity of probiotic bacteria is due in part to their ability to attach to enterocytes. This inhibits the binding of enteric pathogens by a process of competitive exclusion. Attachment of probiotic bacteria to cell surface receptors of enterocytes also initiates signalling events that result in the synthesis of cytokines. Probiotic bacteria also exert an influence on commensal micro-organisms by the production of lactic acid and bacteriocins. These substances inhibit growth of pathogens and also alter the ecological balance of enteric commensals. Production of butyric acid by some probiotic bacteria affects the turnover of enterocytes and neutralizes the activity of dietary carcinogens, such as nitrosamines, that are generated by the metabolic activity of commensal bacteria in subjects consuming a high-protein diet. Therefore, inclusion of probiotic bacteria in fermented dairy products enhances their value as better therapeutic functional foods. However, insufficient viability and survival of these bacteria remain a problem in commercial food products. By selecting better functional probiotic strains and adopting improved methods to enhance survival, including the use of appropriate prebiotics and the optimal combination of probiotics and prebiotics (synbiotics), an increased delivery of viable bacteria in fermented products to the consumers can be achieved.
                Bookmark

                Author and article information

                Journal
                Korean J Food Sci Anim Resour
                Korean J Food Sci Anim Resour
                Korean J Food Sci Anim Resour
                kosfa
                Korean Journal for Food Science of Animal Resources
                Korean Society for Food Science of Animal Resources
                1225-8563
                2234-246X
                April 2018
                30 April 2018
                : 38
                : 2
                : 403-416
                Affiliations
                [1 ]Department of Animal Science, Chonbuk National University , Jeonju 54896, Korea
                [2 ]Department of Animal Biotechnology, Chonbuk National University , Jeonju 54896, Korea
                [3 ]Department of Animal Science, Chungbuk National University , Cheongju 28644, Korea
                [4 ]International Agricultural Development and Cooperation Center, Chonbuk National University , Jeonju 54896, Korea
                Author notes
                [* ]Corresponding author : Kwan Seob Shim; Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea Tel: +82-63-270-2609 Fax: +82-63-270-2614 E-mail: ksshim@ 123456jbnu.ac.kr
                Jae Young Heo; International Agricultural Development and Cooperation Center, Chonbuk National University, Jeonju 54896, Korea Tel: +82-63-270-5925 Fax: +82-63-270-5927 E-mail: jyheobio@ 123456gmail.com

                † These authors contributed equally to this work

                Article
                kosfa-38-2-403
                10.5851/kosfa.2018.38.2.403
                5960836
                29805288
                fb3df79e-afed-4045-ab48-72d762745e61
                © Copyright 2018 Korean Society for Food Science of Animal Resources

                This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 05 February 2018
                : 28 March 2018
                : 29 March 2018
                Categories
                Article

                probiotics,meat quality,chemical composition,crossbred pigs

                Comments

                Comment on this article