58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep learning in optical metrology: a review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the advances in scientific foundations and technological implementations, optical metrology has become versatile problem-solving backbones in manufacturing, fundamental research, and engineering applications, such as quality control, nondestructive testing, experimental mechanics, and biomedicine. In recent years, deep learning, a subfield of machine learning, is emerging as a powerful tool to address problems by learning from data, largely driven by the availability of massive datasets, enhanced computational power, fast data storage, and novel training algorithms for the deep neural network. It is currently promoting increased interests and gaining extensive attention for its utilization in the field of optical metrology. Unlike the traditional “physics-based” approach, deep-learning-enabled optical metrology is a kind of “data-driven” approach, which has already provided numerous alternative solutions to many challenging problems in this field with better performances. In this review, we present an overview of the current status and the latest progress of deep-learning technologies in the field of optical metrology. We first briefly introduce both traditional image-processing algorithms in optical metrology and the basic concepts of deep learning, followed by a comprehensive review of its applications in various optical metrology tasks, such as fringe denoising, phase retrieval, phase unwrapping, subset correlation, and error compensation. The open challenges faced by the current deep-learning approach in optical metrology are then discussed. Finally, the directions for future research are outlined.

          Related collections

          Most cited references443

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Deep Residual Learning for Image Recognition

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long Short-Term Memory

              Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
                Bookmark

                Author and article information

                Contributors
                zuochao@njust.edu.cn
                mkmqian@ntu.edu.sg
                chenqian@njust.edu.cn
                Journal
                Light Sci Appl
                Light Sci Appl
                Light, Science & Applications
                Nature Publishing Group UK (London )
                2095-5545
                2047-7538
                23 February 2022
                23 February 2022
                2022
                : 11
                : 39
                Affiliations
                [1 ]GRID grid.410579.e, ISNI 0000 0000 9116 9901, Smart Computational Imaging (SCI) Laboratory, , Nanjing University of Science and Technology, ; 210094 Nanjing, Jiangsu Province China
                [2 ]GRID grid.410579.e, ISNI 0000 0000 9116 9901, Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, , Nanjing University of Science and Technology, ; 210094 Nanjing, Jiangsu Province China
                [3 ]GRID grid.4868.2, ISNI 0000 0001 2171 1133, School of Engineering and Materials Science, , Queen Mary University of London, ; London, E1 4NS UK
                [4 ]GRID grid.59025.3b, ISNI 0000 0001 2224 0361, School of Computer Science and Engineering, , Nanyang Technological University, ; Singapore, 639798 Singapore
                Author information
                http://orcid.org/0000-0002-1461-0032
                http://orcid.org/0000-0002-9110-4950
                http://orcid.org/0000-0002-9148-3401
                Article
                714
                10.1038/s41377-022-00714-x
                8866517
                35197457
                fb33fd45-1f4a-4514-bddf-750d15bcb06c
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 July 2021
                : 3 January 2022
                : 11 January 2022
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 61722506, 61705105, 62075096
                Award ID: 61722506, 61705105, 62075096
                Award ID: 61722506, 61705105, 62075096
                Award ID: 61722506, 61705105, 62075096
                Award ID: 61722506, 61705105, 62075096
                Award ID: 61722506, 61705105, 62075096
                Award Recipient :
                Funded by: National Key R&D Program of China (2017YFF0106403) Leading Technology of Jiangsu Basic Research Plan (BK20192003) National Defense Science and Technology Foundation of China (2019-JCJQ-JJ-381) "333 Engineering" Research Project of Jiangsu Province (BRA2016407) Fundamental Research Funds for the Central Universities (30920032101, 30919011222) Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense (3091801410411)
                Funded by: National Key R&D Program of China (2017YFF0106403) Leading Technology of Jiangsu Basic Research Plan (BK20192003) National Defense Science and Technology Foundation of China (2019-JCJQ-JJ-381) "333 Engineering" Research Project of Jiangsu Province (BRA2016407) Fundamental Research Funds for the Central Universities (30920032101, 30919011222) Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense (3091801410411)
                Funded by: National Key R&D Program of China (2017YFF0106403) Leading Technology of Jiangsu Basic Research Plan (BK20192003) National Defense Science and Technology Foundation of China (2019-JCJQ-JJ-381) "333 Engineering" Research Project of Jiangsu Province (BRA2016407) Fundamental Research Funds for the Central Universities (30920032101, 30919011222) Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense (3091801410411)
                Funded by: National Key R&D Program of China (2017YFF0106403) Leading Technology of Jiangsu Basic Research Plan (BK20192003) National Defense Science and Technology Foundation of China (2019-JCJQ-JJ-381) "333 Engineering" Research Project of Jiangsu Province (BRA2016407) Fundamental Research Funds for the Central Universities (30920032101, 30919011222) Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense (3091801410411)
                Funded by: National Key R&D Program of China (2017YFF0106403) Leading Technology of Jiangsu Basic Research Plan (BK20192003) National Defense Science and Technology Foundation of China (2019-JCJQ-JJ-381) "333 Engineering" Research Project of Jiangsu Province (BRA2016407) Fundamental Research Funds for the Central Universities (30920032101, 30919011222) Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense (3091801410411)
                Funded by: National Key R&D Program of China (2017YFF0106403) Leading Technology of Jiangsu Basic Research Plan (BK20192003) National Defense Science and Technology Foundation of China (2019-JCJQ-JJ-381) "333 Engineering" Research Project of Jiangsu Province (BRA2016407) Fundamental Research Funds for the Central Universities (30920032101, 30919011222) Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense (3091801410411)
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2022

                imaging and sensing,optical metrology
                imaging and sensing, optical metrology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content960

                Cited by62

                Most referenced authors2,530