1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mathematical modeling of vaccination as a control measure of stress to fight COVID-19 infections

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The world experienced the life-threatening COVID-19 disease worldwide since its inversion. The whole world experienced difficult moments during the COVID-19 period, whereby most individual lives were affected by the disease socially and economically. The disease caused millions of illnesses and hundreds of thousands of deaths worldwide. To fight and control the COVID-19 disease intensity, mathematical modeling was an essential tool used to determine the potentiality and seriousness of the disease. Due to the effects of the COVID-19 disease, scientists observed that vaccination was the main option to fight against the disease for the betterment of human lives and the world economy. Unvaccinated individuals are more stressed with the disease, hence their body’s immune system are affected by the disease. In this study, the S V E I H R deterministic model of COVID-19 with six compartments was proposed and analyzed. Analytically, the next-generation matrix method was used to determine the basic reproduction number ( R 0 ). Detailed stability analysis of the no-disease equilibrium ( E 0 ) of the proposed model to observe the dynamics of the system was carried out and the results showed that E 0 is stable if R 0 < 1 and unstable when R 0 > 1 . The Bayesian Markov Chain Monte Carlo (MCMC) method for the parameter identifiability was discussed. Moreover, the sensitivity analysis of R 0 showed that vaccination was an essential method to control the disease. With the presence of a vaccine in our S V E I H R model, the results showed that R 0 = 0 . 208 , which means COVID-19 is fading out of the community and hence minimizes the transmission. Moreover, in the absence of a vaccine in our model, R 0 = 1 . 7214 , which means the disease is in the community and spread very fast. The numerical simulations demonstrated the importance of the proposed model because the numerical results agree with the sensitivity results of the system. The numerical simulations also focused on preventing the disease to spread in the community.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.

          A precise definition of the basic reproduction number, R0, is presented for a general compartmental disease transmission model based on a system of ordinary differential equations. It is shown that, if R0 1, then it is unstable. Thus, R0 is a threshold parameter for the model. An analysis of the local centre manifold yields a simple criterion for the existence and stability of super- and sub-threshold endemic equilibria for R0 near one. This criterion, together with the definition of R0, is illustrated by treatment, multigroup, staged progression, multistrain and vector-host models and can be applied to more complex models. The results are significant for disease control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations.

            The expected number of secondary cases produced by a typical infected individual during its entire period of infectiousness in a completely susceptible population is mathematically defined as the dominant eigenvalue of a positive linear operator. It is shown that in certain special cases one can easily compute or estimate this eigenvalue. Several examples involving various structuring variables like age, sexual disposition and activity are presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study

              Background The dynamics of vaccination against SARS-CoV-2 are complicated by age-dependent factors, changing levels of infection, and the relaxation of non-pharmaceutical interventions (NPIs) as the perceived risk declines, necessitating the use of mathematical models. Our aims were to use epidemiological data from the UK together with estimates of vaccine efficacy to predict the possible long-term dynamics of SARS-CoV-2 under the planned vaccine rollout. Methods In this study, we used a mathematical model structured by age and UK region, fitted to a range of epidemiological data in the UK, which incorporated the planned rollout of a two-dose vaccination programme (doses 12 weeks apart, protection onset 14 days after vaccination). We assumed default vaccine uptake of 95% in those aged 80 years and older, 85% in those aged 50–79 years, and 75% in those aged 18–49 years, and then varied uptake optimistically and pessimistically. Vaccine efficacy against symptomatic disease was assumed to be 88% on the basis of Pfizer-BioNTech and Oxford-AstraZeneca vaccines being administered in the UK, and protection against infection was varied from 0% to 85%. We considered the combined interaction of the UK vaccination programme with multiple potential future relaxations (or removals) of NPIs, to predict the reproduction number (R) and pattern of daily deaths and hospital admissions due to COVID-19 from January, 2021, to January, 2024. Findings We estimate that vaccination alone is insufficient to contain the outbreak. In the absence of NPIs, even with our most optimistic assumption that the vaccine will prevent 85% of infections, we estimate R to be 1·58 (95% credible intervals [CI] 1·36–1·84) once all eligible adults have been offered both doses of the vaccine. Under the default uptake scenario, removal of all NPIs once the vaccination programme is complete is predicted to lead to 21 400 deaths (95% CI 1400–55 100) due to COVID-19 for a vaccine that prevents 85% of infections, although this number increases to 96 700 deaths (51 800–173 200) if the vaccine only prevents 60% of infections. Although vaccination substantially reduces total deaths, it only provides partial protection for the individual; we estimate that, for the default uptake scenario and 60% protection against infection, 48·3% (95% CI 48·1–48·5) and 16·0% (15·7–16·3) of deaths will be in individuals who have received one or two doses of the vaccine, respectively. Interpretation For all vaccination scenarios we investigated, our predictions highlight the risks associated with early or rapid relaxation of NPIs. Although novel vaccines against SARS-CoV-2 offer a potential exit strategy for the pandemic, success is highly contingent on the precise vaccine properties and population uptake, both of which need to be carefully monitored. Funding National Institute for Health Research, Medical Research Council, and UK Research and Innovation.
                Bookmark

                Author and article information

                Journal
                Chaos Solitons Fractals
                Chaos Solitons Fractals
                Chaos, Solitons, and Fractals
                The Authors. Published by Elsevier Ltd.
                0960-0779
                0960-0779
                22 November 2022
                22 November 2022
                : 112920
                Affiliations
                [a ]School of Computational and Communication Science and Engineering, The Nelson Mandela African Institution of Science and Technology, P.O Box 447, Arusha, Tanzania
                [b ]African Institute for Mathematical Sciences, NEI Globla Secretariat, Rue KG590 ST, Kigali, Rwanda
                Author notes
                [* ]Corresponding author.
                Article
                S0960-0779(22)01099-2 112920
                10.1016/j.chaos.2022.112920
                9678855
                36440088
                fb012f4b-e698-47d7-a894-be76ad149c47
                © 2022 The Authors. Published by Elsevier Ltd.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 26 June 2022
                : 29 October 2022
                : 16 November 2022
                Categories
                Article

                sveihr, susceptible, vaccination, exposed, infected, hospitalized and recovered,mcmc, markov chain monte carlo,who, world health organization,r0, basic reproduction number,e0, no-disease equilibrium,the next-generation matrix method,sveihr model,mcmc method,covid-19 vaccine

                Comments

                Comment on this article