35
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular and Cellular Mechanisms Affected in ALS

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amyotrophic lateral sclerosis (ALS) is a terminal late-onset condition characterized by the loss of upper and lower motor neurons. Mutations in more than 30 genes are associated to the disease, but these explain only ~20% of cases. The molecular functions of these genes implicate a wide range of cellular processes in ALS pathology, a cohesive understanding of which may provide clues to common molecular mechanisms across both familial (inherited) and sporadic cases and could be key to the development of effective therapeutic approaches. Here, the different pathways that have been investigated in ALS are summarized, discussing in detail: mitochondrial dysfunction, oxidative stress, axonal transport dysregulation, glutamate excitotoxicity, endosomal and vesicular transport impairment, impaired protein homeostasis, and aberrant RNA metabolism. This review considers the mechanistic roles of ALS-associated genes in pathology, viewed through the prism of shared molecular pathways.

          Related collections

          Most cited references323

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Extracellular vesicles: Exosomes, microvesicles, and friends

          Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and RNA. Deficiencies in our knowledge of the molecular mechanisms for EV formation and lack of methods to interfere with the packaging of cargo or with vesicle release, however, still hamper identification of their physiological relevance in vivo. In this review, we focus on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.

            Ubiquitin-positive, tau- and alpha-synuclein-negative inclusions are hallmarks of frontotemporal lobar degeneration with ubiquitin-positive inclusions and amyotrophic lateral sclerosis. Although the identity of the ubiquitinated protein specific to either disorder was unknown, we showed that TDP-43 is the major disease protein in both disorders. Pathologic TDP-43 was hyper-phosphorylated, ubiquitinated, and cleaved to generate C-terminal fragments and was recovered only from affected central nervous system regions, including hippocampus, neocortex, and spinal cord. TDP-43 represents the common pathologic substrate linking these neurodegenerative disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.

              Several families have been reported with autosomal-dominant frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), genetically linked to chromosome 9p21. Here, we report an expansion of a noncoding GGGGCC hexanucleotide repeat in the gene C9ORF72 that is strongly associated with disease in a large FTD/ALS kindred, previously reported to be conclusively linked to chromosome 9p. This same repeat expansion was identified in the majority of our families with a combined FTD/ALS phenotype and TDP-43-based pathology. Analysis of extended clinical series found the C9ORF72 repeat expansion to be the most common genetic abnormality in both familial FTD (11.7%) and familial ALS (23.5%). The repeat expansion leads to the loss of one alternatively spliced C9ORF72 transcript and to formation of nuclear RNA foci, suggesting multiple disease mechanisms. Our findings indicate that repeat expansion in C9ORF72 is a major cause of both FTD and ALS. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                J Pers Med
                J Pers Med
                jpm
                Journal of Personalized Medicine
                MDPI
                2075-4426
                25 August 2020
                September 2020
                : 10
                : 3
                : 101
                Affiliations
                [1 ]Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry-Londonderry BT47, UK; le_gall-l@ 123456ulster.ac.uk (L.L.G.); Anakor-E@ 123456ulster.ac.uk (E.A.); Connolly-O4@ 123456ulster.ac.uk (O.C.); u.vijayakumar@ 123456ulster.ac.uk (U.G.V.); w.duddy@ 123456ulster.ac.uk (W.J.D.)
                [2 ]NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK
                Author notes
                [* ]Correspondence: s.duguez@ 123456ulster.ac.uk
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0001-9032-6319
                https://orcid.org/0000-0003-2239-9094
                https://orcid.org/0000-0001-6510-5426
                Article
                jpm-10-00101
                10.3390/jpm10030101
                7564998
                32854276
                fac561f9-7245-4980-8a90-064809b1549e
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 July 2020
                : 22 August 2020
                Categories
                Review

                oxidative stress,mitochondria dysfunction,axonal transport,autophagy,endocytosis,secretion,excitotoxicity,rna metabolism,mnd

                Comments

                Comment on this article