23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Trial of SAGE-217 in Patients with Major Depressive Disorder

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression.

          Measurement of cortical gamma-aminobutyric acid (GABA) and glutamate concentrations is possible using proton magnetic resonance spectroscopy. An initial report, using this technique, suggested that occipital cortex GABA concentrations are reduced in patients with major depressive disorder (MDD) relative to healthy comparison subjects. To replicate the GABA findings in a larger sample of MDD patients, to examine the clinical correlates of the GABA reductions in these subjects, and to examine other critical metabolite levels. Study for association. Academic clinical research program. The GABA measurements were made on 38 healthy control subjects and 33 depressed subjects. Occipital cortex metabolite levels were measured using proton magnetic resonance spectroscopy. The levels of occipital cortex GABA, glutamate, N-acetylaspartate, aspartate, creatine, and choline-containing compounds, along with several measures of tissue composition, were compared between the 2 groups. Depressed subjects had significantly lower occipital cortex GABA concentrations compared with healthy controls (P =.01). In addition, mean glutamate levels were significantly increased in depressed subjects compared with healthy controls (P<.001). Significant reductions in the percentage of solid tissue (P =.009) and the percentage of white matter (P =.04) in the voxel were also observed. An examination of a combined database including subjects from the original study suggests that GABA and glutamate concentrations differ among MDD subtypes. The study replicates the findings of decreased GABA concentrations in the occipital cortex of subjects with MDD. It also demonstrates that there is a change in the ratio of excitatory-inhibitory neurotransmitter levels in the cortex of depressed subjects that may be related to altered brain function. Last, the combined data set suggests that magnetic resonance spectroscopy GABA measures may serve as a biological marker for a subtype of MDD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Brexanolone (SAGE-547 injection) in post-partum depression: a randomised controlled trial

            Post-partum depression is a serious mood disorder in women that might be triggered by peripartum fluctuations in reproductive hormones. This phase 2 study investigated brexanolone (USAN; formerly SAGE-547 injection), an intravenous formulation of allopregnanolone, a positive allosteric modulator of γ-aminobutyric acid (GABAA) receptors, for the treatment of post-partum depression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuroactive steroids.

              S Paul, R Purdy (1992)
              Neuroactive steroids are natural or synthetic steroids that rapidly alter the excitability of neurons by binding to membrane-bound receptors such as those for inhibitory and (or) excitatory neurotransmitters. The best-studied neuroactive steroids are a series of sedative-hypnotic 3 alpha-hydroxy ring A-reduced pregnane steroids that include the major metabolites of progesterone and deoxycorticosterone, 3 alpha-hydroxy-5 alpha-pregnan-20-one (allopregnanolone) and 3 alpha,21-dihydroxy-5 alpha-pregnan-20-one (allotetrahydroDOC), respectively. These 3 alpha-hydroxysteroids do not interact with classical intracellular steroid receptors but bind stereoselectively and with high affinity to receptors for the major inhibitory neurotransmitter in brain, gamma-amino-butyric acid (GABA). Biochemical and electrophysiological studies have shown that these steroids markedly augment GABA-activated chloride ion currents in a manner similar (but not identical) to that of anesthetic barbiturates. Several steroids have also been observed to have convulsant or proconvulsant properties, including the synthetic amidine 3 alpha-hydroxy-16-imino-5 beta-17-azaandrostan-11-one (RU5135) and the natural sulfate esters of pregnenolone and dehydroepiandrosterone. Several of these have been shown to be bicuculline or picrotoxin-like GABAA receptor antagonists. Examples of steroids that alter neuronal excitability rapidly by augmenting or inhibiting excitatory amino acid receptor-mediated responses have also been reported. Recently, allopregnanolone and allotetrahydroDOC have also been measured in brain and plasma where their levels have been shown to fluctuate in response to stress and during the estrous and menstrual cycles of rats and humans, respectively. Although the major fraction of allopregnanolone in tissue, including brain, is of adrenal and/or ovarian origin, appreciable levels of allopregnanolone can still be measured in the brains of adrenalectomized and/or oophorectomized animals. Receptor-active neurosteroids may represent an important class of neuromodulators that can rapidly alter central nervous system excitability via novel nongenomic mechanisms.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                September 05 2019
                September 05 2019
                : 381
                : 10
                : 903-911
                Affiliations
                [1 ]From Sage Therapeutics, Cambridge (H.G.-B., C.S., A.J.S., H.L., R.L., S.M.P., J.J., J.J.D., S.J.K.), Kaul Consulting, Concord (I.K.), and the University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester (A.J.R.) — all in Massachusetts; the Atlanta Center for Medical Research, Atlanta (R.R.); Washington University School of Medicine, St. Louis (C.F.Z., S.M.P.); and the University of North Carolina School of Medicine, Chapel Hill (D.R.R.).
                Article
                10.1056/NEJMoa1815981
                31483961
                fa872835-b396-42d0-84ca-52386ad7bffa
                © 2019

                http://www.nejmgroup.org/legal/terms-of-use.htm

                History

                Comments

                Comment on this article