A non-human like glycosylation pattern in human recombinant glycoproteins expressed by animal cells may compromise their use as therapeutic drugs. In order to correct the CHO glycosylation machinery, a CHO cell line producing recombinant human interferon- gamma (IFN) was transformed to replace the endogenous pseudogene with a functional copy of the enzyme alpha2,6-sialyltransferase (alpha2,6-ST). Both the parental and the modified CHO cell line were propagated in serum-free batch culture with or without 1 mM sodium butyrate. Although Na-butyrate inhibited cell growth, IFN concentration was increased twofold. The IFN sialylation status was determined using linkage specific sialidases and HPLC. Under non- induced conditions, IFN expressed by alpha2,6-engineered cells contained 68% of the total sialic acids in the alpha2,6- conformation and the overall molar ratio of sialic acids to IFN was 2.3. Sodium butyrate addition increased twofold the molar ratio of total sialic acids to IFN and 82% of total sialic acids on IFN were in the alpha2,6-conformation. In contrast, no effect of the sodium butyrate was noticed on the sialylation of the IFN secreted by the alpha2,6-ST deficient parental cell line. This study deals for the first time with the effect of Na-butyrate on CHO cells engineered to produce human like sialylation.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.