39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Is Low Non-Lethal Concentration of Methylmercury Really Safe? A Report on Genotoxicity with Delayed Cell Proliferation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human exposure to relatively low levels of methylmercury is worrying, especially in terms of its genotoxicity. It is currently unknown as to whether exposure to low levels of mercury (below established limits) is safe. Genotoxicity was already shown in lymphocytes, but studies with cells of the CNS (as the main target organ) are scarce. Moreover, disturbances in the cell cycle and cellular proliferation have previously been observed in neuronal cells, but no data are presently available for glial cells. Interestingly, cells of glial origin accumulate higher concentrations of methylmercury than those of neuronal origin. Thus, the aim of this work was to analyze the possible genotoxicity and alterations in the cell cycle and cell proliferation of a glioma cell line (C6) exposed to a low, non-lethal and non-apoptotic methylmercury concentration. Biochemical (mitochondrial activity) and morphological (integrity of the membrane) assessments confirmed the absence of cell death after exposure to 3 μM methylmercury for 24 hours. Even without promoting cell death, this treatment significantly increased genotoxicity markers (DNA fragmentation, micronuclei, nucleoplasmic bridges and nuclear buds). Changes in the cell cycle profile (increased mitotic index and cell populations in the S and G2/M phases) were observed, suggesting arrest of the cycle. This delay in the cycle was followed, 24 hours after methylmercury withdrawal, by a decrease number of viable cells, reduced cellular confluence and increased doubling time of the culture. Our work demonstrates that exposure to a low sublethal concentration of MeHg considered relatively safe according to current limits promotes genotoxicity and disturbances in the proliferation of cells of glial origin with sustained consequences after methylmercury withdrawal. This fact becomes especially important, since this cellular type accumulates more methylmercury than neurons and displays a vital role protecting the CNS, especially in chronic intoxication with this heavy metal.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          A simple technique for quantitation of low levels of DNA damage in individual cells.

          Human lymphocytes were either exposed to X-irradiation (25 to 200 rads) or treated with H2O2 (9.1 to 291 microM) at 4 degrees C and the extent of DNA migration was measured using a single-cell microgel electrophoresis technique under alkaline conditions. Both agents induced a significant increase in DNA migration, beginning at the lowest dose evaluated. Migration patterns were relatively homogeneous among cells exposed to X-rays but heterogeneous among cells treated with H2O2. An analysis of repair kinetics following exposure to 200 rads X-rays was conducted with lymphocytes obtained from three individuals. The bulk of the DNA repair occurred within the first 15 min, while all of the repair was essentially complete by 120 min after exposure. However, some cells demonstrated no repair during this incubation period while other cells demonstrated DNA migration patterns indicative of more damage than that induced by the initial irradiation with X-rays. This technique appears to be sensitive and useful for detecting damage and repair in single cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells.

            Micronuclei (MN) and other nuclear anomalies such as nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) are biomarkers of genotoxic events and chromosomal instability. These genome damage events can be measured simultaneously in the cytokinesis-block micronucleus cytome (CBMNcyt) assay. The molecular mechanisms leading to these events have been investigated over the past two decades using molecular probes and genetically engineered cells. In this brief review, we summarise the wealth of knowledge currently available that best explains the formation of these important nuclear anomalies that are commonly seen in cancer and are indicative of genome damage events that could increase the risk of developmental and degenerative diseases. MN can originate during anaphase from lagging acentric chromosome or chromatid fragments caused by misrepair of DNA breaks or unrepaired DNA breaks. Malsegregation of whole chromosomes at anaphase may also lead to MN formation as a result of hypomethylation of repeat sequences in centromeric and pericentromeric DNA, defects in kinetochore proteins or assembly, dysfunctional spindle and defective anaphase checkpoint genes. NPB originate from dicentric chromosomes, which may occur due to misrepair of DNA breaks, telomere end fusions, and could also be observed when defective separation of sister chromatids at anaphase occurs due to failure of decatenation. NBUD represent the process of elimination of amplified DNA, DNA repair complexes and possibly excess chromosomes from aneuploid cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Evidence on the Human Health Effects of Low-Level Methylmercury Exposure

              Background: Methylmercury (MeHg) is a known neuro-toxicant. Emerging evidence indicates it may have adverse effects on the neuro-logic and other body systems at common low levels of exposure. Impacts of MeHg exposure could vary by individual susceptibility or be confounded by bene-ficial nutrients in fish containing MeHg. Despite its global relevance, synthesis of the available literature on low-level MeHg exposure has been limited. Objectives: We undertook a synthesis of the current knowledge on the human health effects of low-level MeHg exposure to provide a basis for future research efforts, risk assessment, and exposure remediation policies worldwide. Data sources and extraction: We reviewed the published literature for original human epidemio-logic research articles that reported a direct biomarker of mercury exposure. To focus on high-quality studies and those specifically on low mercury exposure, we excluded case series, as well as studies of populations with unusually high fish consumption (e.g., the Seychelles), marine mammal consumption (e.g., the Faroe Islands, circumpolar, and other indigenous populations), or consumption of highly contaminated fish (e.g., gold-mining regions in the Amazon). Data synthesis: Recent evidence raises the possibility of effects of low-level MeHg exposure on fetal growth among susceptible subgroups and on infant growth in the first 2 years of life. Low-level effects of MeHg on neuro-logic outcomes may differ by age, sex, and timing of exposure. No clear pattern has been observed for cardio-vascular disease (CVD) risk across populations or for specific CVD end points. For the few studies evaluating immunologic effects associated with MeHg, results have been inconsistent. Conclusions: Studies targeted at identifying potential mechanisms of low-level MeHg effects and characterizing individual susceptibility, sexual dimorphism, and non-linearity in dose response would help guide future prevention, policy, and regulatory efforts surrounding MeHg exposure.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                13 September 2016
                2016
                : 11
                : 9
                : e0162822
                Affiliations
                [1 ]Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110 Belém (Pará), Brasil
                [2 ]Laboratório de Cultura de Tecidos e Citogenética, Departamento de Meio Ambiente, Instituto Evandro Chagas, 67030-000 Ananindeua (Pará), Brasil
                [3 ]Laboratório de Fertilização In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110 Belém (Pará), Brasil
                [4 ]Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-110 Belém (Pará), Brasil
                [5 ]Laboratório de Neuroquímica Molecular e Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110 Belém (Pará), Brasil
                Chinese Academy of Sciences, CHINA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                • Conceptualization: ACM EHCO MSM CSFM BMM JLMN MECL.

                • Data curation: ACM MECL.

                • Formal analysis: ACM GPFA JRSM MECL.

                • Funding acquisition: EHCO MECL.

                • Investigation: ACM GPFA JRSM FESS MECL.

                • Methodology: ACM EHCO MSM FESS EAFJ MECL.

                • Project administration: EHCO MECL.

                • Resources: EHCO MSM BMM JLMN MECL.

                • Software: ACM EHCO MSM GPFA JRSM MECL.

                • Supervision: EHCO MSM MECL.

                • Validation: ACM EHCO MSM MECL.

                • Visualization: ACM GPFA JRSM MECL.

                • Writing – original draft: ACM MECL.

                • Writing – review & editing: ACM EHCO MSM GPFA JRSM FESS EAFJ CSFM BMM JLMN MECL.

                Article
                PONE-D-16-07239
                10.1371/journal.pone.0162822
                5021279
                27622704
                f9e121fe-465f-4d03-8619-ade7c6156dbe
                © 2016 Crespo-Lopez et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 March 2016
                : 11 August 2016
                Page count
                Figures: 5, Tables: 0, Pages: 14
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100003593, Conselho Nacional de Desenvolvimento Científico e Tecnológico;
                Award ID: 467143/2014-5
                Award Recipient : Maria Elena Crespo-López
                Funded by: funder-id http://dx.doi.org/10.13039/501100003593, Conselho Nacional de Desenvolvimento Científico e Tecnológico;
                Award ID: 447568/2014-0
                Award Recipient : Maria Elena Crespo-López
                This work was supported by Conselho Nacional de Ciência e Tecnologia em Pesquisa (CNPq, Brazil; grants 467143/2014-5 and 447568/2014-0) and Instituto Evandro Chagas (IEC, Brazil). J.L.M. do Nascimento, E.H.C. Oliveira and M.E. Crespo-López thank CNPq for their CNPq fellowships. Also, A. Costa-Malaquias, J.R. Souza-Monteiro and G.P.F. Arrifano thank Fundação de Amparo à Pesquisa do Estado do Pará (FAPESPA, Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES, Brazil) for their PhD fellowships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Cell Cycle and Cell Division
                Physical Sciences
                Chemistry
                Chemical Elements
                Mercury (Element)
                Medicine and Health Sciences
                Mental Health and Psychiatry
                Substance-Related Disorders
                Intoxication
                Medicine and Health Sciences
                Public and Occupational Health
                Substance-Related Disorders
                Intoxication
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Cell Proliferation
                Biology and Life Sciences
                Microbiology
                Protozoology
                Micronuclei
                Research and analysis methods
                Bioassays and physiological analysis
                Biochemical analysis
                Colorimetric assays
                MTT assay
                Research and analysis methods
                Bioassays and physiological analysis
                Biochemical analysis
                Enzyme assays
                MTT assay
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Cell Death
                Apoptosis
                Biology and life sciences
                Genetics
                DNA
                DNA fragmentation
                Biology and life sciences
                Biochemistry
                Nucleic acids
                DNA
                DNA fragmentation
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article