There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Background An estimand is a precise description of the treatment effect to be estimated from a trial (the question) and is distinct from the methods of statistical analysis (how the question is to be answered). The potential use of estimands to improve trial research and reporting has been underpinned by the recent publication of the ICH E9(R1) Addendum on the use of estimands in clinical trials in 2019. We set out to assess how well estimands are described in published trial protocols. Methods We reviewed 50 trial protocols published in October 2020 in Trials and BMJ Open . For each protocol, we determined whether the estimand for the primary outcome was explicitly stated, not stated but inferable (i.e. could be constructed from the information given), or not inferable. Results None of the 50 trials explicitly described the estimand for the primary outcome, and in 74% of trials, it was impossible to infer the estimand from the information included in the protocol. The population attribute of the estimand could not be inferred in 36% of trials, the treatment condition attribute in 20%, the population-level summary measure in 34%, and the handling of intercurrent events in 60% (the strategy for handling non-adherence was not inferable in 32% of protocols, and the strategy for handling mortality was not inferable in 80% of the protocols for which it was applicable). Conversely, the outcome attribute was stated for all trials. In 28% of trials, three or more of the five estimand attributes could not be inferred. Conclusions The description of estimands in published trial protocols is poor, and in most trials, it is impossible to understand exactly what treatment effect is being estimated. Given the utility of estimands to improve clinical research and reporting, this urgently needs to change. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05644-4.
Background The coronavirus pandemic (Covid-19) presents a variety of challenges for ongoing clinical trials, including an inevitably higher rate of missing outcome data, with new and non-standard reasons for missingness. International drug trial guidelines recommend trialists review plans for handling missing data in the conduct and statistical analysis, but clear recommendations are lacking. Methods We present a four-step strategy for handling missing outcome data in the analysis of randomised trials that are ongoing during a pandemic. We consider handling missing data arising due to (i) participant infection, (ii) treatment disruptions and (iii) loss to follow-up. We consider both settings where treatment effects for a ‘pandemic-free world’ and ‘world including a pandemic’ are of interest. Results In any trial, investigators should; (1) Clarify the treatment estimand of interest with respect to the occurrence of the pandemic; (2) Establish what data are missing for the chosen estimand; (3) Perform primary analysis under the most plausible missing data assumptions followed by; (4) Sensitivity analysis under alternative plausible assumptions. To obtain an estimate of the treatment effect in a ‘pandemic-free world’, participant data that are clinically affected by the pandemic (directly due to infection or indirectly via treatment disruptions) are not relevant and can be set to missing. For primary analysis, a missing-at-random assumption that conditions on all observed data that are expected to be associated with both the outcome and missingness may be most plausible. For the treatment effect in the ‘world including a pandemic’, all participant data is relevant and should be included in the analysis. For primary analysis, a missing-at-random assumption – potentially incorporating a pandemic time-period indicator and participant infection status – or a missing-not-at-random assumption with a poorer response may be most relevant, depending on the setting. In all scenarios, sensitivity analysis under credible missing-not-at-random assumptions should be used to evaluate the robustness of results. We highlight controlled multiple imputation as an accessible tool for conducting sensitivity analyses. Conclusions Missing data problems will be exacerbated for trials active during the Covid-19 pandemic. This four-step strategy will facilitate clear thinking about the appropriate analysis for relevant questions of interest.
Abstract Objectives To evaluate how often the precise research question being addressed about an intervention (the estimand) is stated or can be determined from reported methods, and to identify what types of questions are being investigated in phase 2-4 randomised trials. Design Systematic review of the clarity of research questions being investigated in randomised trials in 2020 in six leading general medical journals. Data source PubMed search in February 2021. Eligibility criteria for selecting studies Phase 2-4 randomised trials, with no restrictions on medical conditions or interventions. Cluster randomised, crossover, non-inferiority, and equivalence trials were excluded. Main outcome measures Number of trials that stated the precise primary question being addressed about an intervention (ie, the primary estimand), or for which the primary estimand could be determined unambiguously from the reported methods using statistical knowledge. Strategies used to handle post-randomisation events that affect the interpretation or existence of patient outcomes, such as intervention discontinuations or uses of additional drug treatments (known as intercurrent events), and the corresponding types of questions being investigated. Results 255 eligible randomised trials were identified. No trials clearly stated all the attributes of the estimand. In 117 (46%) of 255 trials, the primary estimand could be determined from the reported methods. Intercurrent events were reported in 242 (95%) of 255 trials; but the handling of these could only be determined in 125 (49%) of 255 trials. Most trials that provided this information considered the occurrence of intercurrent events as irrelevant in the calculation of the treatment effect and assessed the effect of the intervention regardless (96/125, 77%)—that is, they used a treatment policy strategy. Four (4%) of 99 trials with treatment non-adherence owing to adverse events estimated the treatment effect in a hypothetical setting (ie, the effect as if participants continued treatment despite adverse events), and 19 (79%) of 24 trials where some patients died estimated the treatment effect in a hypothetical setting (ie, the effect as if participants did not die). Conclusions The precise research question being investigated in most trials is unclear, mainly because of a lack of clarity on the approach to handling intercurrent events. Clear reporting of estimands is necessary in trial reports so that all stakeholders, including clinicians, patients and policy makers, can make fully informed decisions about medical interventions. Systematic review registration PROSPERO CRD42021238053.
Imperial Clinical Trials Unit, School of Public Health, Imperial College London,
(
https://ror.org/041kmwe10)
Stadium House, 68 Wood Lane, London, W12 7RH UK
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution
and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if you modified the licensed material. You do not have permission under
this licence to share adapted material derived from this article or parts of it. The
images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit
http://creativecommons.org/licenses/by-nc-nd/4.0/.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.