17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current lung cancer screening guidelines may miss high-risk population: a real-world study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Despite much research published on lung cancer screening, China has had no large-scale study on the missed diagnosis of lung cancer in a health examination population. We therefore did a real-world study using the current lung cancer screening guidelines to a health examination population in China to determine the proportion of lung cancer cases that have been missed.

          Methods

          A real-world cohort study of screening, with the use of low-dose computed tomography, was conducted among people who took yearly health checkup in health management center of West China Hospital between 2006 and 2017. We respectively used current guidelines including lung cancer screening guidelines of the U.S. Preventive Services Task Force (USPSTF) and expert consensus on low dose spiral CT lung cancer screening in China.

          Results

          In a total of 15,996 participants with health examination who completed the baseline screening, 6779 (42.4%) subjects had at least one positive finding, and 142 (2.1%) cases of lung cancer were screened positive. The false positive rate was 97.9%. Of 142 lung cancer cases detected in our study, only 9.2% met the lung cancer screening guidelines proposed by the USPSTF, and 24.4% met that of China. The rates of missed diagnosis were as high as 90.8 and 75.6% respectively. In addition, we did an in-depth analysis by gender. We found that among male patients with lung cancer, the proportion of smokers was 75%, and the proportion of young people under 50 was 23.2%. Among female patients with lung cancer, the proportion of smokers was only 5.8%, and the proportion of young people under 50 was up to 33.3%.

          Conclusions

          The rate of missed diagnosis was as high as 90.8% applying the current lung cancer screening guidelines to the health examination population in China. Further study to determine screening guidelines for targeted populations, is warranted.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reduced lung-cancer mortality with low-dose computed tomographic screening.

            (2011)
            The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer. From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02). Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global Cancer Statistics, 2002

              Estimates of the worldwide incidence, mortality and prevalence of 26 cancers in the year 2002 are now available in the GLOBOCAN series of the International Agency for Research on Cancer. The results are presented here in summary form, including the geographic variation between 20 large "areas" of the world. Overall, there were 10.9 million new cases, 6.7 million deaths, and 24.6 million persons alive with cancer (within three years of diagnosis). The most commonly diagnosed cancers are lung (1.35 million), breast (1.15 million), and colorectal (1 million); the most common causes of cancer death are lung cancer (1.18 million deaths), stomach cancer (700,000 deaths), and liver cancer (598,000 deaths). The most prevalent cancer in the world is breast cancer (4.4 million survivors up to 5 years following diagnosis). There are striking variations in the risk of different cancers by geographic area. Most of the international variation is due to exposure to known or suspected risk factors related to lifestyle or environment, and provides a clear challenge to prevention.
                Bookmark

                Author and article information

                Contributors
                huangyan_0819@163.com
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central (London )
                1471-2407
                11 January 2021
                11 January 2021
                2021
                : 21
                : 50
                Affiliations
                [1 ]GRID grid.13291.38, ISNI 0000 0001 0807 1581, Health Management Center, West China Hospital, , Sichuan University, ; Chengdu, Sichuan China
                [2 ]GRID grid.13291.38, ISNI 0000 0001 0807 1581, Division of Pulmonary and Critical Care Medicine, West China Hospital, , Sichuan University, ; Chengdu, Sichuan China
                [3 ]GRID grid.66875.3a, ISNI 0000 0004 0459 167X, Division of Epidemiology, Department of Health Sciences Research, , Mayo Clinic, ; Rochester, MN USA
                [4 ]GRID grid.417468.8, ISNI 0000 0000 8875 6339, Department of Health Sciences Research, , Mayo Clinic, ; Scottsdale, AZ USA
                [5 ]GRID grid.13291.38, ISNI 0000 0001 0807 1581, Precision Medicine Research Center, West China Hospital, , Sichuan University, ; Chengdu, Sichuan China
                [6 ]GRID grid.13291.38, ISNI 0000 0001 0807 1581, Frontiers Science Center for Disease-related Molecular Network, , Sichuan University, ; Chengdu, Sichuan China
                [7 ]GRID grid.412901.f, ISNI 0000 0004 1770 1022, The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, ; Chengdu, Sichuan China
                Author information
                http://orcid.org/0000-0002-8182-9376
                Article
                7750
                10.1186/s12885-020-07750-z
                7802250
                33430831
                f99ef52e-949e-4ad3-b273-91c840147d17
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 17 October 2020
                : 17 December 2020
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2021

                Oncology & Radiotherapy
                lung cancer,screening,high-risk population,health examination population,real-world study,ldct

                Comments

                Comment on this article