28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Wearable Sensors for Biochemical Sweat Analysis

      1 , 2 , 1 , 2 , 2 , 3 , 4 , 1 , 2 , 4 , 5 , 6
      Annual Review of Analytical Chemistry
      Annual Reviews

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sweat is a largely unexplored biofluid that contains many important biomarkers ranging from electrolytes and metabolites to proteins, cytokines, antigens, and exogenous drugs. The eccrine and apocrine glands produce and excrete sweat through microscale pores on the epidermal surface, offering a noninvasive means for capturing and probing biomarkers that reflect hydration state, fatigue, nutrition, and physiological changes. Recent advances in skin-interfaced wearable sensors capable of real-time in situ sweat collection and analytics provide capabilities for continuous biochemical monitoring in an ambulatory mode of operation. This review presents a broad overview of sweat-based biochemical sensor technologies with an emphasis on enabling materials, designs, and target analytes of interest. The article concludes with a summary of challenges and opportunities for researchers and clinicians in this swiftly growing field.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          The rise of plastic bioelectronics.

          Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics. The resulting electronic materials and devices are soft, stretchable and mechanically conformable, which are important qualities for interacting with biological systems in both wearable and implantable devices. Work is currently aimed at improving these devices with a view to making the electronic-biological interface as seamless as possible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring.

            Skin is the largest organ of the human body, and it offers a diagnostic interface rich with vital biological signals from the inner organs, blood vessels, muscles, and dermis/epidermis. Soft, flexible, and stretchable electronic devices provide a novel platform to interface with soft tissues for robotic feedback and control, regenerative medicine, and continuous health monitoring. Here, we introduce the term "lab-on-skin" to describe a set of electronic devices that have physical properties, such as thickness, thermal mass, elastic modulus, and water-vapor permeability, which resemble those of the skin. These devices can conformally laminate on the epidermis to mitigate motion artifacts and mismatches in mechanical properties created by conventional, rigid electronics while simultaneously providing accurate, non-invasive, long-term, and continuous health monitoring. Recent progress in the design and fabrication of soft sensors with more advanced capabilities and enhanced reliability suggest an impending translation of these devices from the research lab to clinical environments. Regarding these advances, the first part of this manuscript reviews materials, design strategies, and powering systems used in soft electronics. Next, the paper provides an overview of applications of these devices in cardiology, dermatology, electrophysiology, and sweat diagnostics, with an emphasis on how these systems may replace conventional clinical tools. The review concludes with an outlook on current challenges and opportunities for future research directions in wearable health monitoring.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat

              Capabilities in health monitoring via capture and quantitative chemical analysis of sweat could complement, or potentially obviate the need for, approaches based on sporadic assessment of blood samples. Established sweat monitoring technologies use simple fabric swatches and are limited to basic analysis in controlled laboratory or hospital settings. We present a collection of materials and device designs for soft, flexible and stretchable microfluidic systems, including embodiments that integrate wireless communication electronics, which can intimately and robustly bond to the surface of skin without chemical and mechanical irritation. This integration defines access points for a small set of sweat glands such that perspiration spontaneously initiates routing of sweat through a microfluidic network and set of reservoirs. Embedded chemical analyses respond in colorimetric fashion to markers such as chloride and hydronium ions, glucose and lactate. Wireless interfaces to digital image capture hardware serve as a means for quantitation. Human studies demonstrated the functionality of this microfluidic device during fitness cycling in a controlled environment and during long-distance bicycle racing in arid, outdoor conditions. The results include quantitative values for sweat rate, total sweat loss, pH and concentration of both chloride and lactate.
                Bookmark

                Author and article information

                Journal
                Annual Review of Analytical Chemistry
                Annual Rev. Anal. Chem.
                Annual Reviews
                1936-1327
                1936-1335
                June 12 2019
                June 12 2019
                : 12
                : 1
                : 1-22
                Affiliations
                [1 ]Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA;
                [2 ]Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, USA
                [3 ]Epicore Biosystems, Inc., Evanston, Illinois 60208, USA
                [4 ]Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
                [5 ]Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
                [6 ]Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
                Article
                10.1146/annurev-anchem-061318-114910
                f9942ade-4010-475a-ab23-d3e446cdd129
                © 2019
                History

                Comments

                Comment on this article