0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multicenter Validation of a Deep Learning Detection Algorithm for Focal Cortical Dysplasia.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To test the hypothesis that a multicenter-validated computer deep learning algorithm detects MRI-negative focal cortical dysplasia (FCD).

          Related collections

          Author and article information

          Journal
          Neurology
          Neurology
          Ovid Technologies (Wolters Kluwer Health)
          1526-632X
          0028-3878
          October 19 2021
          : 97
          : 16
          Affiliations
          [1 ] From the Neuroimaging of Epilepsy Laboratory (R.S.G., H.-M.L., B.C., S.-J.H., N.B., A.B.), Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Pediatric Neurology Unit and Laboratories (C.B., M.L., R.G.), Children's Hospital A. Meyer-University of Florence, Italy; Epilepsy Unit (F.D.) and Neuroradiology (L.D.), Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy; Department of Neurology (V.C.M.C., F.C.), University of Campinas, Brazil; The Florey Institute of Neuroscience and Mental Health and The University of Melbourne (M.S., G.J.), Victoria, Australia; Department of Pediatrics (D.V.S.), British Columbia Children's Hospital, Vancouver, Canada; Aix Marseille University (F.B.), INSERM UMR 1106, Institut de Neurosciences des Systèmes; Aix Marseille University (M.G.), CNRS, CRMBM UMR 7339, Marseille, France; Freiburg Epilepsy Center (A.S.-B., H.U.), Universitätsklinikum Freiburg, Germany; Department of Neurology (K.H.C.), Yonsei University College of Medicine, Seoul, Korea; and Department of Neurology (R.E.H.), Washington University School of Medicine, St. Louis, MO.
          [2 ] From the Neuroimaging of Epilepsy Laboratory (R.S.G., H.-M.L., B.C., S.-J.H., N.B., A.B.), Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Pediatric Neurology Unit and Laboratories (C.B., M.L., R.G.), Children's Hospital A. Meyer-University of Florence, Italy; Epilepsy Unit (F.D.) and Neuroradiology (L.D.), Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy; Department of Neurology (V.C.M.C., F.C.), University of Campinas, Brazil; The Florey Institute of Neuroscience and Mental Health and The University of Melbourne (M.S., G.J.), Victoria, Australia; Department of Pediatrics (D.V.S.), British Columbia Children's Hospital, Vancouver, Canada; Aix Marseille University (F.B.), INSERM UMR 1106, Institut de Neurosciences des Systèmes; Aix Marseille University (M.G.), CNRS, CRMBM UMR 7339, Marseille, France; Freiburg Epilepsy Center (A.S.-B., H.U.), Universitätsklinikum Freiburg, Germany; Department of Neurology (K.H.C.), Yonsei University College of Medicine, Seoul, Korea; and Department of Neurology (R.E.H.), Washington University School of Medicine, St. Louis, MO. andrea.bernasconi@mcgill.ca.
          Article
          WNL.0000000000012698
          10.1212/WNL.0000000000012698
          8548962
          34521691
          f9705204-b10b-4fbe-aadd-36f13f7697c5
          © 2021 American Academy of Neurology.
          History

          Comments

          Comment on this article