59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hairy Transcriptional Repression Targets and Cofactor Recruitment in Drosophila

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Members of the widely conserved Hairy/Enhancer of split family of basic Helix-Loop-Helix repressors are essential for proper Drosophila and vertebrate development and are misregulated in many cancers. While a major step forward in understanding the molecular mechanism(s) surrounding Hairy-mediated repression was made with the identification of Groucho, Drosophila C-terminal binding protein (dCtBP), and Drosophila silent information regulator 2 (dSir2) as Hairy transcriptional cofactors, the identity of Hairy target genes and the rules governing cofactor recruitment are relatively unknown. We have used the chromatin profiling method DamID to perform a global and systematic search for direct transcriptional targets for Drosophila Hairy and the genomic recruitment sites for three of its cofactors: Groucho, dCtBP, and dSir2. Each of the proteins was tethered to Escherichia coli DNA adenine methyltransferase, permitting methylation proximal to in vivo binding sites in both Drosophila Kc cells and early embryos. This approach identified 40 novel genomic targets for Hairy in Kc cells, as well as 155 loci recruiting Groucho, 107 loci recruiting dSir2, and wide genomic binding of dCtBP to 496 loci. We also adapted DamID profiling such that we could use tightly gated collections of embryos (2–6 h) and found 20 Hairy targets related to early embryogenesis. As expected of direct targets, all of the putative Hairy target genes tested show Hairy-dependent expression and have conserved consensus C-box–containing sequences that are directly bound by Hairy in vitro. The distribution of Hairy targets in both the Kc cell and embryo DamID experiments corresponds to Hairy binding sites in vivo on polytene chromosomes. Similarly, the distributions of loci recruiting each of Hairy's cofactors are detected as cofactor binding sites in vivo on polytene chromosomes. We have identified 59 putative transcriptional targets of Hairy. In addition to finding putative targets for Hairy in segmentation, we find groups of targets suggesting roles for Hairy in cell cycle, cell growth, and morphogenesis, processes that must be coordinately regulated with pattern formation. Examining the recruitment of Hairy's three characterized cofactors to their putative target genes revealed that cofactor recruitment is context-dependent. While Groucho is frequently considered to be the primary Hairy cofactor, we find here that it is associated with only a minority of Hairy targets. The majority of Hairy targets are associated with the presence of a combination of dCtBP and dSir2. Thus, the DamID chromatin profiling technique provides a systematic means of identifying transcriptional target genes and of obtaining a global view of cofactor recruitment requirements during development.

          Abstract

          A new chromatin profiling technique identifies targets of the transcription factor Hairy -- as well as targets of three co- repressors -- which implicate Hairy in several developmental processes

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data.

          The identification of potential regulatory motifs in new sequence data is increasingly important for experimental design. Those motifs are commonly located by matches to IUPAC strings derived from consensus sequences. Although this method is simple and widely used, a major drawback of IUPAC strings is that they necessarily remove much of the information originally present in the set of sequences. Nucleotide distribution matrices retain most of the information and are thus better suited to evaluate new potential sites. However, sufficiently large libraries of pre-compiled matrices are a prerequisite for practical application of any matrix-based approach and are just beginning to emerge. Here we present a set of tools for molecular biologists that allows generation of new matrices and detection of potential sequence matches by automatic searches with a library of pre-compiled matrices. We also supply a large library (> 200) of transcription factor binding site matrices that has been compiled on the basis of published matrices as well as entries from the TRANSFAC database, with emphasis on sequences with experimentally verified binding capacity. Our search method includes position weighting of the matrices based on the information content of individual positions and calculates a relative matrix similarity. We show several examples suggesting that this matrix similarity is useful in estimating the functional potential of matrix matches and thus provides a valuable basis for designing appropriate experiments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gal4 in the Drosophila female germline.

            The modular Gal4 system has proven to be an extremely useful tool for conditional gene expression in Drosophila. One limitation has been the inability of the system to work in the female germline. A modified Gal4 system that works throughout oogenesis is presented here. To achieve germline expression, it was critical to change the basal promoter and 3'-UTR in the Gal4-responsive expression vector (generating UASp). Basal promoters and heterologous 3'-UTRs are often considered neutral, but as shown here, can endow qualitative tissue-specificity to a chimeric transcript. The modified Gal4 system was used to investigate the role of the Drosophila FGF homologue branchless, ligand for the FGF receptor breathless, in border cell migration. FGF signaling guides tracheal cell migration in the embryo. However, misexpression of branchless in the ovary had no effect on border cell migration. Thus border cells and tracheal cells appear to be guided differently. Copyright 1998 Elsevier Science Ireland Ltd. All Rights Reserved
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase.

              We have developed a novel technique, named DamID, for the identification of DNA loci that interact in vivo with specific nuclear proteins in eukaryotes. By tethering Escherichia coli DNA adenine methyltransferase (Dam) to a chromatin protein, Dam can be targeted in vivo to native binding sites of this protein, resulting in local DNA methylation. Sites of methylation can subsequently be mapped using methylation-specific restriction enzymes or antibodies. We demonstrate the successful application of DamID both in Drosophila cell cultures and in whole flies. When Dam is tethered to the DNA-binding domain of GAL4, targeted methylation is limited to a region of a few kilobases surrounding a GAL4 binding sequence. Using DamID, we identified a number of expected and unexpected target loci for Drosophila heterochromatin protein 1. DamID has potential for genome-wide mapping of in vivo targets of chromatin proteins in various eukaryotes.
                Bookmark

                Author and article information

                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                July 2004
                13 July 2004
                : 2
                : 7
                : e178
                Affiliations
                [1] 1Division of Basic Sciences, Fred Hutchinson Cancer Research Center Seattle, Washington, United States of America
                [2] 2Genomics Resource, Fred Hutchinson Cancer Research Center Seattle, Washington, United States of America
                [3] 3Scientific Imaging, Fred Hutchinson Cancer Research Center Seattle, WashingtonUnited States of America
                Article
                10.1371/journal.pbio.0020178
                449821
                15252443
                f9624ee2-1106-44a7-90f9-b22e444da4f0
                Copyright: © 2004 Bianchi-Frias et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
                History
                : 13 October 2003
                : 14 April 2004
                Categories
                Research Article
                Cell Biology
                Development
                Genetics/Genomics/Gene Therapy
                Drosophila

                Life sciences
                Life sciences

                Comments

                Comment on this article