Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Catchment microbial dynamics: the emergence of a research agenda

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: not found
          • Article: not found

          Modeling the relationship between land use and surface water quality

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Escherichia coli: the best biological drinking water indicator for public health protection

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters.

              Sunlight inactivation in fresh (river) water of fecal coliforms, enterococci, Escherichia coli, somatic coliphages, and F-RNA phages from waste stabilization pond (WSP) effluent was compared. Ten experiments were conducted outdoors in 300-liter chambers, held at 14C (mean river water temperature). Sunlight inactivation (k(S)) rates, as a function of cumulative global solar radiation (insolation), were all more than 10 times higher than the corresponding dark inactivation (k(D)) rates in enclosed (control) chambers. The overall k(S) ranking (from greatest to least inactivation) was as follows: enterococci > fecal coliforms greater-than-or-equal E. coli > somatic coliphages > F-RNA phages. In winter, fecal coliform and enterococci inactivation rates were similar but, in summer, enterococci were inactivated far more rapidly. In four experiments that included freshwater-raw sewage mixtures, enterococci survived longer than fecal coliforms (a pattern opposite to that observed with the WSP effluent), but there was little difference in phage inactivation between effluents. In two experiments which included simulated estuarine water and seawater, sunlight inactivation of all of the indicators increased with increasing salinity. Inactivation rates in freshwater, as seen under different optical filters, decreased with the increase in the spectral cutoff (50% light transmission) wavelength. The enterococci and F-RNA phages were inactivated by a wide range of wavelengths, suggesting photooxidative damage. Inactivation of fecal coliforms and somatic coliphages was mainly by shorter (UV-B) wavelengths, a result consistent with photobiological damage. Fecal coliform repair mechanisms appear to be activated in WSPs, and the surviving cells exhibit greater sunlight resistance in natural waters than those from raw sewage. In contrast, enterococci appear to suffer photooxidative damage in WSPs, rendering them susceptible to further photooxidative damage after discharge. This suggests that they are unsuitable as indicators of WSP effluent discharges to natural waters. Although somatic coliphages are more sunlight resistant than the other indicators in seawater, F-RNA phages are the most resistant in freshwater, where they may thus better represent enteric virus survival.
                Bookmark

                Author and article information

                Journal
                Progress in Physical Geography
                Progress in Physical Geography
                SAGE Publications
                0309-1333
                1477-0296
                August 18 2016
                August 18 2016
                : 31
                : 1
                : 59-76
                Article
                10.1177/0309133307073882
                f95e2fd0-123a-4113-b50f-2d3740303855
                © 2016
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,623

                Cited by11

                Most referenced authors877