17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EPAS1 Gain-of-Function Mutation Contributes to High-Altitude Adaptation in Tibetan Horses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High altitude represents some of the most extreme environments worldwide. The genetic changes underlying adaptation to such environments have been recently identified in multiple animals but remain unknown in horses. Here, we sequence the complete genome of 138 domestic horses encompassing a whole altitudinal range across China to uncover the genetic basis for adaptation to high-altitude hypoxia. Our genome data set includes 65 lowland animals across ten Chinese native breeds, 61 horses living at least 3,300 m above sea level across seven locations along Qinghai-Tibetan Plateau, as well as 7 Thoroughbred and 5 Przewalski’s horses added for comparison. We find that Tibetan horses do not descend from Przewalski’s horses but were most likely introduced from a distinct horse lineage, following the emergence of pastoral nomadism in Northwestern China ∼3,700 years ago. We identify that the endothelial PAS domain protein 1 gene ( EPAS1, also HIF2A) shows the strongest signature for positive selection in the Tibetan horse genome. Two missense mutations at this locus appear strongly associated with blood physiological parameters facilitating blood circulation as well as oxygen transportation and consumption in hypoxic conditions. Functional validation through protein mutagenesis shows that these mutations increase EPAS1 stability and its hetero dimerization affinity to ARNT (HIF1B). Our study demonstrates that missense mutations in the EPAS1 gene provided key evolutionary molecular adaptation to Tibetan horses living in high-altitude hypoxic environments. It reveals possible targets for genomic selection programs aimed at increasing hypoxia tolerance in livestock and provides a textbook example of evolutionary convergence across independent mammal lineages.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Genome sequence, comparative analysis, and population genetics of the domestic horse.

          We report a high-quality draft sequence of the genome of the horse (Equus caballus). The genome is relatively repetitive but has little segmental duplication. Chromosomes appear to have undergone few historical rearrangements: 53% of equine chromosomes show conserved synteny to a single human chromosome. Equine chromosome 11 is shown to have an evolutionary new centromere devoid of centromeric satellite DNA, suggesting that centromeric function may arise before satellite repeat accumulation. Linkage disequilibrium, showing the influences of early domestication of large herds of female horses, is intermediate in length between dog and human, and there is long-range haplotype sharing among breeds.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics

              Summary: SPREAD is a user-friendly, cross-platform application to analyze and visualize Bayesian phylogeographic reconstructions incorporating spatial–temporal diffusion. The software maps phylogenies annotated with both discrete and continuous spatial information and can export high-dimensional posterior summaries to keyhole markup language (KML) for animation of the spatial diffusion through time in virtual globe software. In addition, SPREAD implements Bayes factor calculation to evaluate the support for hypotheses of historical diffusion among pairs of discrete locations based on Bayesian stochastic search variable selection estimates. SPREAD takes advantage of multicore architectures to process large joint posterior distributions of phylogenies and their spatial diffusion and produces visualizations as compelling and interpretable statistical summaries for the different spatial projections. Availability: SPREAD is licensed under the GNU Lesser GPL and its source code is freely available as a GitHub repository: https://github.com/phylogeography/SPREAD Contact: filip.bielejec@rega.kuleuven.be
                Bookmark

                Author and article information

                Journal
                Mol Biol Evol
                Mol. Biol. Evol
                molbev
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                November 2019
                04 July 2019
                04 July 2019
                : 36
                : 11
                : 2591-2603
                Affiliations
                [1 ] Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, PR China
                [2 ] CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, PR China
                [3 ] College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
                [4 ] International Livestock Research Institute (ILRI), Nairobi, Kenya
                [5 ] Lundbeck Foundation GeoGenetics Center, University of Copenhagen, Denmark
                [6 ] Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS, UMR 5288, Université Paul Sabatier (UPS), Toulouse, France
                Author notes

                These authors contributed equally to this work.

                Associate editor: Sudhir Kumar

                Article
                msz158
                10.1093/molbev/msz158
                6805228
                31273382
                f910dc6c-23dd-4b2e-b96b-71a1c49d82d1
                © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 13
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Discoveries

                Molecular biology
                tibetan horse,hypoxia adaptation,epas1,respiration,metabolism,convergence
                Molecular biology
                tibetan horse, hypoxia adaptation, epas1, respiration, metabolism, convergence

                Comments

                Comment on this article