35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A code within the genetic code: codon usage regulates co-translational protein folding

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genetic code is degenerate, and most amino acids are encoded by two to six synonymous codons. Codon usage bias, the preference for certain synonymous codons, is a universal feature of all genomes examined. Synonymous codon mutations were previously thought to be silent; however, a growing body evidence now shows that codon usage regulates protein structure and gene expression through effects on co-translational protein folding, translation efficiency and accuracy, mRNA stability, and transcription. Codon usage regulates the speed of translation elongation, resulting in non-uniform ribosome decoding rates on mRNAs during translation that is adapted to co-translational protein folding process. Biochemical and genetic evidence demonstrate that codon usage plays an important role in regulating protein folding and function in both prokaryotic and eukaryotic organisms. Certain protein structural types are more sensitive than others to the effects of codon usage on protein folding, and predicted intrinsically disordered domains are more prone to misfolding caused by codon usage changes than other domain types. Bioinformatic analyses revealed that gene codon usage correlates with different protein structures in diverse organisms, indicating the existence of a codon usage code for co-translational protein folding. This review focuses on recent literature on the role and mechanism of codon usage in regulating translation kinetics and co-translational protein folding.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution.

          Strikingly consistent correlations between rates of coding-sequence evolution and gene expression levels are apparent across taxa, but the biological causes behind the selective pressures on coding-sequence evolution remain controversial. Here, we demonstrate conserved patterns of simple covariation between sequence evolution, codon usage, and mRNA level in E. coli, yeast, worm, fly, mouse, and human that suggest that all observed trends stem largely from a unified underlying selective pressure. In metazoans, these trends are strongest in tissues composed of neurons, whose structure and lifetime confer extreme sensitivity to protein misfolding. We propose, and demonstrate using a molecular-level evolutionary simulation, that selection against toxicity of misfolded proteins generated by ribosome errors suffices to create all of the observed covariation. The mechanistic model of molecular evolution that emerges yields testable biochemical predictions, calls into question the use of nonsynonymous-to-synonymous substitution ratios (Ka/Ks) to detect functional selection, and suggests how mistranslation may contribute to neurodegenerative disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Codon usage and tRNA content in unicellular and multicellular organisms.

            T Ikemura (1985)
            Choices of synonymous codons in unicellular organisms are here reviewed, and differences in synonymous codon usages between Escherichia coli and the yeast Saccharomyces cerevisiae are attributed to differences in the actual populations of isoaccepting tRNAs. There exists a strong positive correlation between codon usage and tRNA content in both organisms, and the extent of this correlation relates to the protein production levels of individual genes. Codon-choice patterns are believed to have been well conserved during the course of evolution. Examination of silent substitutions and tRNA populations in Enterobacteriaceae revealed that the evolutionary constraint imposed by tRNA content on codon usage decelerated rather than accelerated the silent-substitution rate, at least insofar as pairs of taxonomically related organisms were examined. Codon-choice patterns of multicellular organisms are briefly reviewed, and diversity in G+C percentage at the third position of codons in vertebrate genes--as well as a possible causative factor in the production of this diversity--is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Function and structure of inherently disordered proteins.

              The application of bioinformatics methodologies to proteins inherently lacking 3D structure has brought increased attention to these macromolecules. Here topics concerning these proteins are discussed, including their prediction from amino acid sequence, their enrichment in eukaryotes compared to prokaryotes, their more rapid evolution compared to structured proteins, their organization into specific groups, their structural preferences, their half-lives in cells, their contributions to signaling diversity (via high contents of multiple-partner binding sites, post-translational modifications, and alternative splicing), their distinct functional repertoire compared to that of structured proteins, and their involvement in diseases.
                Bookmark

                Author and article information

                Contributors
                Yi.Liu@UTSouthwestern.edu
                Journal
                Cell Commun Signal
                Cell Commun. Signal
                Cell Communication and Signaling : CCS
                BioMed Central (London )
                1478-811X
                9 September 2020
                9 September 2020
                2020
                : 18
                : 145
                Affiliations
                GRID grid.267313.2, ISNI 0000 0000 9482 7121, Department of Physiology, ND13.214A, , UT Southwestern Medical Center, ; 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
                Author information
                http://orcid.org/0000-0002-8801-9317
                Article
                642
                10.1186/s12964-020-00642-6
                7488015
                32907610
                f9088ff3-292e-4dd0-aa81-79d3218f8281
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 13 March 2020
                : 10 August 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000057, National Institute of General Medical Sciences;
                Award ID: R35GM118118
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000928, Welch Foundation;
                Award ID: I-1560
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2020

                Cell biology
                codon usage,translation elongation,co-translational protein folding,intrinsically disordered protein

                Comments

                Comment on this article