62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiovascular Protective Effect of Metformin and Telmisartan: Reduction of PARP1 Activity via the AMPK-PARP1 Cascade

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperglycemia and hypertension impair endothelial function in part through oxidative stress-activated poly (ADP-ribose) polymerase 1 (PARP1). Biguanides and angiotensin II receptor blockers (ARBs) such as metformin and telmisartan have a vascular protective effect. We used cultured vascular endothelial cells (ECs), diabetic and hypertensive rodent models, and AMPKα2-knockout mice to investigate whether metformin and telmisartan have a beneficial effect on the endothelium via AMP-activated protein kinase (AMPK) phosphorylation of PARP1 and thus inhibition of PARP1 activity. The results showed that metformin and telmisartan, but not glipizide and metoprolol, activated AMPK, which phosphorylated PARP1 Ser-177 in cultured ECs and the vascular wall of rodent models. Experiments using phosphorylated/de-phosphorylated PARP1 mutants show that AMPK phosphorylation of PARP1 leads to decreased PARP1 activity and attenuated protein poly(ADP-ribosyl)ation (PARylation), but increased endothelial nitric oxide synthase (eNOS) activity and silent mating type information regulation 2 homolog 1 (SIRT1) expression. Taken together, the data presented here suggest biguanides and ARBs have a beneficial effect on the vasculature by the cascade of AMPK phosphorylation of PARP1 to inhibit PARP1 activity and protein PARylation in ECs, thereby mitigating endothelial dysfunction.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Long-term follow-up after tight control of blood pressure in type 2 diabetes.

          Post-trial monitoring of patients in the United Kingdom Prospective Diabetes Study (UKPDS) examined whether risk reductions for microvascular and macrovascular disease, achieved with the use of improved blood-pressure control during the trial, would be sustained. Among 5102 UKPDS patients with newly diagnosed type 2 diabetes mellitus, we randomly assigned, over a 4-year period beginning in 1987, 1148 patients with hypertension to tight or less-tight blood-pressure control regimens. The 884 patients who underwent post-trial monitoring were asked to attend annual UKPDS clinics for the first 5 years, but no attempt was made to maintain their previously assigned therapies. Annual questionnaires completed by patients and general practitioners were used to follow patients who were unable to attend the clinic in years 1 through 5, and questionnaires were used for all patients in years 6 to 10. Seven prespecified aggregate clinical end points were examined on an intention-to-treat basis, according to the previous randomization categories. Differences in blood pressure between the two groups during the trial disappeared within 2 years after termination of the trial. Significant relative risk reductions found during the trial for any diabetes-related end point, diabetes-related death, microvascular disease, and stroke in the group receiving tight, as compared with less tight, blood-pressure control were not sustained during the post-trial follow-up. No risk reductions were seen during or after the trial for myocardial infarction or death from any cause, but a risk reduction for peripheral vascular disease associated with tight blood-pressure control became significant (P=0.02). The benefits of previously improved blood-pressure control were not sustained when between-group differences in blood pressure were lost. Early improvement in blood-pressure control in patients with both type 2 diabetes and hypertension was associated with a reduced risk of complications, but it appears that good blood-pressure control must be continued if the benefits are to be maintained. (UKPDS 81; Current Controlled Trials number, ISRCTN75451837.) 2008 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Effects of Metformin Versus Glipizide on Cardiovascular Outcomes in Patients With Type 2 Diabetes and Coronary Artery Disease

            OBJECTIVE The two major classes of antidiabetic drugs, sulfonylureas and metformin, may differentially affect macrovascular complications and mortality in diabetic patients. We compared the long-term effects of glipizide and metformin on the major cardiovascular events in type 2 diabetic patients who had a history of coronary artery disease (CAD). RESEARCH DESIGN AND METHODS This study is a multicenter, randomized, double-blind, placebo-controlled clinical trial. A total of 304 type 2 diabetic patients with CAD, mean age = 63.3 years (range, 36–80 years), were enrolled. Participants were randomly assigned to receive either glipizide (30 mg daily) or metformin (1.5 g daily) for 3 years. The primary end points were times to the composite of recurrent cardiovascular events, including death from a cardiovascular cause, death from any cause, nonfatal myocardial infarction, nonfatal stroke, or arterial revascularization. RESULTS At the end of study drug administration, both groups achieved a significant decrease in the level of glycated hemoglobin (7.1% in the glipizide group and 7.0% in the metformin group). At a median follow-up of 5.0 years, 91 participants had developed 103 primary end points. Intention-to-treat analysis showed an adjusted hazard ratio (HR) of 0.54 (95% CI 0.30–0.90; P = 0.026) for the composites of cardiovascular events among the patients that received metformin, compared with glipizide. The secondary end points and adverse events were not significantly different between the two groups. CONCLUSIONS Treatment with metformin for 3 years substantially reduced major cardiovascular events in a median follow-up of 5.0 years compared with glipizide. Our results indicated a potential benefit of metformin therapy on cardiovascular outcomes in high-risk patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation.

              PolyADP-ribose polymerases (PARPs) catalyze a posttranslational modification of nuclear proteins by polyADP-ribosylation. The catalytic activity of the abundant nuclear protein PARP-1 is stimulated by DNA strand breaks, and PARP-1 activation is required for initiation of DNA repair. Here we show that PARP-1 also acts within extracellular signal-regulated kinase (ERK) signaling cascade that mediates growth and differentiation. The findings reveal an alternative mode of PARP-1 activation, which does not involve binding to DNA or DNA damage. In a cell-free system, recombinant PARP-1 was intensively activated and thereby polyADP-ribosylated by a direct interaction with phosphorylated ERK2, and the activated PARP-1 dramatically increased ERK2-catalyzed phosphorylation of the transcription factor Elk1. In cortical neurons treated with nerve growth factors and in stimulated cardiomyocytes, PARP-1 activation enhanced ERK-induced Elk1-phosphorylation, core histone acetylation, and transcription of the Elk1-target gene c-fos. These findings constitute evidence for PARP-1 activity within the ERK signal-transduction pathway.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                17 March 2016
                2016
                : 11
                : 3
                : e0151845
                Affiliations
                [1 ]Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi'an, China
                [2 ]Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
                [3 ]Departments of Cardiopulmonary Science and Anatomy, Schools of Allied Health and Medicine, Loma Linda University, Loma Linda, CA, United States of America
                [4 ]Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
                [5 ]Department of Medicine, School of Medicine, University of California, San Diego, La Jolla CA, United States of America
                [6 ]Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi'an, China
                The Chinese University of Hong Kong, HONG KONG
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TL JS. Performed the experiments: FS ZL Jin Z. Jiao. Z YY YW HX. Analyzed the data: TM BG YZ ZC. Contributed reagents/materials/analysis tools: HX YZ BG. Wrote the paper: FS TL ZC JS.

                Article
                PONE-D-16-02468
                10.1371/journal.pone.0151845
                4795690
                26986624
                f9024cb0-fb66-4a38-840d-27740210ffbb
                © 2016 Shang et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 January 2016
                : 5 March 2016
                Page count
                Figures: 6, Tables: 0, Pages: 16
                Funding
                This work was supported by NSFC 81270349, NSFC 81300067, US National Institutes of Health grants HL89940, HL108735, and US National Institutes of Health grant HL122368.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Proteins
                Post-Translational Modification
                Phosphorylation
                Physical Sciences
                Chemistry
                Chemical Compounds
                Organic Compounds
                Carbohydrates
                Monosaccharides
                Glucose
                Physical Sciences
                Chemistry
                Organic Chemistry
                Organic Compounds
                Carbohydrates
                Monosaccharides
                Glucose
                Biology and Life Sciences
                Anatomy
                Cardiovascular Anatomy
                Blood Vessels
                Aorta
                Medicine and Health Sciences
                Anatomy
                Cardiovascular Anatomy
                Blood Vessels
                Aorta
                Medicine and Health Sciences
                Endocrinology
                Endocrine Disorders
                Diabetes Mellitus
                Medicine and Health Sciences
                Metabolic Disorders
                Diabetes Mellitus
                Medicine and Health Sciences
                Metabolic Disorders
                Hyperglycemia
                Biology and Life Sciences
                Cell Biology
                Oxidative Stress
                Medicine and Health Sciences
                Pharmacology
                Drugs
                Antihypertensive Drugs
                Medicine and Health Sciences
                Vascular Medicine
                Blood Pressure
                Hypertension
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,209

                Cited by22

                Most referenced authors1,053