Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Safety and Adverse Events Related to COVID-19 mRNA Vaccines; a Systematic Review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction:

          Knowledge of vaccine-related adverse events is crucial as they are among the most ‎important factors ‎that cause hesitation in receiving vaccines. Therefore, we aimed to systematically ‎review the adverse events ‎related to the mRNA vaccines reported in the literature.‎

          Method:

          A systematic literature search was carried out in the databases of Scopus, PubMed, ‎Cochrane, and Web ‎of Science. We selected original studies that explored the side effects of ‎mRNA ‎COVID-19 vaccines using a two-phase (title/abstract and full-text) screening process.‎

          Results:

          Cardiac ‎complications were the most commonly reported severe adverse events. It appeared that ‎systemic adverse reactions are more ‎common after the second dose of vaccines. The number of ‎adverse effects reported after the Pfizer vaccine was ‎higher than other vaccines, mostly due to its ‎earlier approval and more widespread use throughout the world. Cardiac adverse events had a ‎‎higher prevalence but no significant association has been found between COVID-19 mRNA vaccines ‎and cardiac ‎adverse events except for myopericarditis. ‎

          Conclusion:

          Vaccines ‎play a crucial role in controlling the COVID-19 pandemic and decreasing ‎mortalities and the results of the present ‎review acknowledge the fact that the benefits outweigh the ‎adverse events of these vaccines.‎

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine

          Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a worldwide pandemic. Safe and effective vaccines are needed urgently. Methods In an ongoing multinational, placebo-controlled, observer-blinded, pivotal efficacy trial, we randomly assigned persons 16 years of age or older in a 1:1 ratio to receive two doses, 21 days apart, of either placebo or the BNT162b2 vaccine candidate (30 μg per dose). BNT162b2 is a lipid nanoparticle–formulated, nucleoside-modified RNA vaccine that encodes a prefusion stabilized, membrane-anchored SARS-CoV-2 full-length spike protein. The primary end points were efficacy of the vaccine against laboratory-confirmed Covid-19 and safety. Results A total of 43,548 participants underwent randomization, of whom 43,448 received injections: 21,720 with BNT162b2 and 21,728 with placebo. There were 8 cases of Covid-19 with onset at least 7 days after the second dose among participants assigned to receive BNT162b2 and 162 cases among those assigned to placebo; BNT162b2 was 95% effective in preventing Covid-19 (95% credible interval, 90.3 to 97.6). Similar vaccine efficacy (generally 90 to 100%) was observed across subgroups defined by age, sex, race, ethnicity, baseline body-mass index, and the presence of coexisting conditions. Among 10 cases of severe Covid-19 with onset after the first dose, 9 occurred in placebo recipients and 1 in a BNT162b2 recipient. The safety profile of BNT162b2 was characterized by short-term, mild-to-moderate pain at the injection site, fatigue, and headache. The incidence of serious adverse events was low and was similar in the vaccine and placebo groups. Conclusions A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older. Safety over a median of 2 months was similar to that of other viral vaccines. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine

            Abstract Background Vaccines are needed to prevent coronavirus disease 2019 (Covid-19) and to protect persons who are at high risk for complications. The mRNA-1273 vaccine is a lipid nanoparticle–encapsulated mRNA-based vaccine that encodes the prefusion stabilized full-length spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes Covid-19. Methods This phase 3 randomized, observer-blinded, placebo-controlled trial was conducted at 99 centers across the United States. Persons at high risk for SARS-CoV-2 infection or its complications were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 μg) or placebo 28 days apart. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with SARS-CoV-2. Results The trial enrolled 30,420 volunteers who were randomly assigned in a 1:1 ratio to receive either vaccine or placebo (15,210 participants in each group). More than 96% of participants received both injections, and 2.2% had evidence (serologic, virologic, or both) of SARS-CoV-2 infection at baseline. Symptomatic Covid-19 illness was confirmed in 185 participants in the placebo group (56.5 per 1000 person-years; 95% confidence interval [CI], 48.7 to 65.3) and in 11 participants in the mRNA-1273 group (3.3 per 1000 person-years; 95% CI, 1.7 to 6.0); vaccine efficacy was 94.1% (95% CI, 89.3 to 96.8%; P<0.001). Efficacy was similar across key secondary analyses, including assessment 14 days after the first dose, analyses that included participants who had evidence of SARS-CoV-2 infection at baseline, and analyses in participants 65 years of age or older. Severe Covid-19 occurred in 30 participants, with one fatality; all 30 were in the placebo group. Moderate, transient reactogenicity after vaccination occurred more frequently in the mRNA-1273 group. Serious adverse events were rare, and the incidence was similar in the two groups. Conclusions The mRNA-1273 vaccine showed 94.1% efficacy at preventing Covid-19 illness, including severe disease. Aside from transient local and systemic reactions, no safety concerns were identified. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates

              Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and the resulting disease, coronavirus disease 2019 (Covid-19), have spread to millions of persons worldwide. Multiple vaccine candidates are under development, but no vaccine is currently available. Interim safety and immunogenicity data about the vaccine candidate BNT162b1 in younger adults have been reported previously from trials in Germany and the United States. Methods In an ongoing, placebo-controlled, observer-blinded, dose-escalation, phase 1 trial conducted in the United States, we randomly assigned healthy adults 18 to 55 years of age and those 65 to 85 years of age to receive either placebo or one of two lipid nanoparticle–formulated, nucleoside-modified RNA vaccine candidates: BNT162b1, which encodes a secreted trimerized SARS-CoV-2 receptor–binding domain; or BNT162b2, which encodes a membrane-anchored SARS-CoV-2 full-length spike, stabilized in the prefusion conformation. The primary outcome was safety (e.g., local and systemic reactions and adverse events); immunogenicity was a secondary outcome. Trial groups were defined according to vaccine candidate, age of the participants, and vaccine dose level (10 μg, 20 μg, 30 μg, and 100 μg). In all groups but one, participants received two doses, with a 21-day interval between doses; in one group (100 μg of BNT162b1), participants received one dose. Results A total of 195 participants underwent randomization. In each of 13 groups of 15 participants, 12 participants received vaccine and 3 received placebo. BNT162b2 was associated with a lower incidence and severity of systemic reactions than BNT162b1, particularly in older adults. In both younger and older adults, the two vaccine candidates elicited similar dose-dependent SARS-CoV-2–neutralizing geometric mean titers, which were similar to or higher than the geometric mean titer of a panel of SARS-CoV-2 convalescent serum samples. Conclusions The safety and immunogenicity data from this U.S. phase 1 trial of two vaccine candidates in younger and older adults, added to earlier interim safety and immunogenicity data regarding BNT162b1 in younger adults from trials in Germany and the United States, support the selection of BNT162b2 for advancement to a pivotal phase 2–3 safety and efficacy evaluation. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728.)
                Bookmark

                Author and article information

                Journal
                Arch Acad Emerg Med
                Arch Acad Emerg Med
                AAEM
                Archives of Academic Emergency Medicine
                Shahid Beheshti University of Medical Sciences (Tehran, Iran )
                2645-4904
                2022
                22 May 2022
                : 10
                : 1
                : e41
                Affiliations
                [1 ]Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran.
                [2 ]School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
                [3 ]Department of Nursing, Khalkhal University of Medical Sciences; Khalkhal, Iran.
                [4 ]Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran.
                [5 ]School of Medicine, Islamic Azad University, Tehran, Iran.
                [6 ]Biomedical Engineering Unit, University of Ghana Medical Center (UGMC), Accra, Ghana.
                [7 ]Department of Health Information Technology, Esfarayen Faculty of Medical Sciences, Esfarayen, Iran.
                [8 ]School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand.
                [9 ]Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran.
                Author notes
                [* ]Esmaeil Mehraeen; Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran. Postal Code: 5681761351,
                Article
                10.22037/aaem.v10i1.1597
                9206826
                35765616
                f8dd3947-3f63-4f12-bea0-ea3683b1949b

                This open-access article distributed under the terms of the Creative Commons Attribution NonCommercial 3.0 License (CC BY-NC 3.0) https://creativecommons.org/licenses/by-nc/3.0/.

                History
                : March 2022
                : April 2022
                Categories
                Original Article

                adverse effects; covid-19 vaccines,2019-ncov vaccine mrna-1273,mrna vaccines,bnt162 vaccine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content293

                Cited by8

                Most referenced authors2,149