1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Supplementing cholamine to diet lowers laying rate by promoting liver fat deposition and altering intestinal microflora in laying hens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effects of cholamine, a raw material for synthesis of some active lipids, are unknown in poultry. To address this, 180 52-wk-old Hyline laying hens were randomly divided into 3 groups (20 replicates per group with three hens per replicate). The control group and the treatment groups (treatment 1 and 2) were fed basal diet and the diet supplemented with 500 or 1,000 mg of cholamine per kilogram of the diet for 35 d, respectively. The data showed that supplementary cholamine significantly lowered egg production, daily feed intake, serum high-density lipoprotein cholesterol level, liver index, and the percentages of C15:0 and C20:0 in fatty acid composition of liver, significantly elevated hepatic triglyceride content, the ratio of villus height to crypt depth ( P < 0.05), and the percentage of C18:2n−6 and the ratio of n−6 to n−3 polyunsaturated fatty acids in liver fat ( P < 0.10). Moreover, supplementary cholamine altered the relative abundance of some intestinal bacteria with a decrease in the alpha biodiversity ( P < 0.10). Additionally, transcriptome analysis on the livers of the treatment vs. the control groups identified 1,151 up- and 914 down-regulated differentially expressed genes ( DEGs), and pathway analysis revealed that the suppressed Notch signaling pathway and the enhanced Oxidative phosphorylation pathway were enriched with DEGs. Particularly, fat absorption, transport and oxidative phosphorylation-related DEGs (e.g., FABP1, APOA4, and PCK1) were significantly induced, but fatty acid synthesis, and lipid package and secretion-related DEGs (e.g., FASN, SCD, and MTTP) were not. In conclusion, supplementary cholamine may lower egg production by promoting hepatic lipid deposition and reducing abundances of beneficial intestinal bacteria and microfloral biodiversity in laying hens.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Sphingolipids and their metabolism in physiology and disease

          Studies of bioactive lipids in general and sphingolipids in particular have intensified over the past several years, revealing an unprecedented and unanticipated complexity of the lipidome and its many functions, which rivals, if not exceeds, that of the genome or proteome. These results highlight critical roles for bioactive sphingolipids in most, if not all, major cell biological responses, including all major cell signalling pathways, and they link sphingolipid metabolism to key human diseases. Nevertheless, the fairly nascent field of bioactive sphingolipids still faces challenges in its biochemical and molecular underpinnings, including defining the molecular mechanisms of pathway and enzyme regulation, the study of lipid-protein interactions and the development of cellular probes, suitable biomarkers and therapeutic approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers.

            Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Intestinal permeability – a new target for disease prevention and therapy

              Data are accumulating that emphasize the important role of the intestinal barrier and intestinal permeability for health and disease. However, these terms are poorly defined, their assessment is a matter of debate, and their clinical significance is not clearly established. In the present review, current knowledge on mucosal barrier and its role in disease prevention and therapy is summarized. First, the relevant terms ‘intestinal barrier’ and ‘intestinal permeability’ are defined. Secondly, the key element of the intestinal barrier affecting permeability are described. This barrier represents a huge mucosal surface, where billions of bacteria face the largest immune system of our body. On the one hand, an intact intestinal barrier protects the human organism against invasion of microorganisms and toxins, on the other hand, this barrier must be open to absorb essential fluids and nutrients. Such opposing goals are achieved by a complex anatomical and functional structure the intestinal barrier consists of, the functional status of which is described by ‘intestinal permeability’. Third, the regulation of intestinal permeability by diet and bacteria is depicted. In particular, potential barrier disruptors such as hypoperfusion of the gut, infections and toxins, but also selected over-dosed nutrients, drugs, and other lifestyle factors have to be considered. In the fourth part, the means to assess intestinal permeability are presented and critically discussed. The means vary enormously and probably assess different functional components of the barrier. The barrier assessments are further hindered by the natural variability of this functional entity depending on species and genes as well as on diet and other environmental factors. In the final part, we discuss selected diseases associated with increased intestinal permeability such as critically illness, inflammatory bowel diseases, celiac disease, food allergy, irritable bowel syndrome, and – more recently recognized – obesity and metabolic diseases. All these diseases are characterized by inflammation that might be triggered by the translocation of luminal components into the host. In summary, intestinal permeability, which is a feature of intestinal barrier function, is increasingly recognized as being of relevance for health and disease, and therefore, this topic warrants more attention.
                Bookmark

                Author and article information

                Contributors
                Journal
                Poult Sci
                Poult Sci
                Poultry Science
                Elsevier
                0032-5791
                1525-3171
                30 July 2022
                October 2022
                30 July 2022
                : 101
                : 10
                : 102084
                Affiliations
                [0001]College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
                Author notes
                [1 ]Corresponding author: tygeng@ 123456yzu.edu.cn
                Article
                S0032-5791(22)00373-X 102084
                10.1016/j.psj.2022.102084
                9449860
                36055021
                f8a3b17a-ae8f-46c3-bf3e-e3e7a6ca5158
                © 2022 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 21 January 2022
                : 19 July 2022
                Categories
                METABOLISM AND NUTRITION

                cholamine,egg production,intestinal morphology,lipid metabolism,microbiota

                Comments

                Comment on this article