14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Hemodynamic Monitoring With a Wireless Ultrasound Patch

      Journal of Cardiothoracic and Vascular Anesthesia
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Passive leg raising predicts fluid responsiveness in the critically ill.

          Passive leg raising (PLR) represents a "self-volume challenge" that could predict fluid response and might be useful when the respiratory variation of stroke volume cannot be used for that purpose. We hypothesized that the hemodynamic response to PLR predicts fluid responsiveness in mechanically ventilated patients. Prospective study. Medical intensive care unit of a university hospital. We investigated 71 mechanically ventilated patients considered for volume expansion. Thirty-one patients had spontaneous breathing activity and/or arrhythmias. We assessed hemodynamic status at baseline, after PLR, and after volume expansion (500 mL NaCl 0.9% infusion over 10 mins). We recorded aortic blood flow using esophageal Doppler and arterial pulse pressure. We calculated the respiratory variation of pulse pressure in patients without arrhythmias. In 37 patients (responders), aortic blood flow increased by > or =15% after fluid infusion. A PLR increase of aortic blood flow > or =10% predicted fluid responsiveness with a sensitivity of 97% and a specificity of 94%. A PLR increase of pulse pressure > or =12% predicted volume responsiveness with significantly lower sensitivity (60%) and specificity (85%). In 30 patients without arrhythmias or spontaneous breathing, a respiratory variation in pulse pressure > or =12% was of similar predictive value as was PLR increases in aortic blood flow (sensitivity of 88% and specificity of 93%). In patients with spontaneous breathing activity, the specificity of respiratory variations in pulse pressure was poor (46%). The changes in aortic blood flow induced by PLR predict preload responsiveness in ventilated patients, whereas with arrhythmias and spontaneous breathing activity, respiratory variations of arterial pulse pressure poorly predict preload responsiveness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Prediction of fluid responsiveness: an update

            In patients with acute circulatory failure, the decision to give fluids or not should not be taken lightly. The risk of overzealous fluid administration has been clearly established. Moreover, volume expansion does not always increase cardiac output as one expects. Thus, after the very initial phase and/or if fluid losses are not obvious, predicting fluid responsiveness should be the first step of fluid strategy. For this purpose, the central venous pressure as well as other “static” markers of preload has been used for decades, but they are not reliable. Robust evidence suggests that this traditional use should be abandoned. Over the last 15 years, a number of dynamic tests have been developed. These tests are based on the principle of inducing short-term changes in cardiac preload, using heart–lung interactions, the passive leg raise or by the infusion of small volumes of fluid, and to observe the resulting effect on cardiac output. Pulse pressure and stroke volume variations were first developed, but they are reliable only under strict conditions. The variations in vena caval diameters share many limitations of pulse pressure variations. The passive leg-raising test is now supported by solid evidence and is more frequently used. More recently, the end-expiratory occlusion test has been described, which is easily performed in ventilated patients. Unlike the traditional fluid challenge, these dynamic tests do not lead to fluid overload. The dynamic tests are complementary, and clinicians should choose between them based on the status of the patient and the cardiac output monitoring technique. Several methods and tests are currently available to identify preload responsiveness. All have some limitations, but they are frequently complementary. Along with elements indicating the risk of fluid administration, they should help clinicians to take the decision to administer fluids or not in a reasoned way.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy

              In patients with septic shock, the administration of fluids during initial hemodynamic resuscitation remains a major therapeutic challenge. We are faced with many open questions regarding the type, dose and timing of intravenous fluid administration. There are only four major indications for intravenous fluid administration: aside from resuscitation, intravenous fluids have many other uses including maintenance and replacement of total body water and electrolytes, as carriers for medications and for parenteral nutrition. In this paradigm-shifting review, we discuss different fluid management strategies including early adequate goal-directed fluid management, late conservative fluid management and late goal-directed fluid removal. In addition, we expand on the concept of the “four D’s” of fluid therapy, namely drug, dosing, duration and de-escalation. During the treatment of patients with septic shock, four phases of fluid therapy should be considered in order to provide answers to four basic questions. These four phases are the resuscitation phase, the optimization phase, the stabilization phase and the evacuation phase. The four questions are “When to start intravenous fluids?”, “When to stop intravenous fluids?”, “When to start de-resuscitation or active fluid removal?” and finally “When to stop de-resuscitation?” In analogy to the way we handle antibiotics in critically ill patients, it is time for fluid stewardship.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Cardiothoracic and Vascular Anesthesia
                Journal of Cardiothoracic and Vascular Anesthesia
                Elsevier BV
                10530770
                May 2021
                May 2021
                : 35
                : 5
                : 1509-1515
                Article
                10.1053/j.jvca.2021.01.040
                33597088
                f88485e6-819d-421a-9b61-70fcafc42c95
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article