1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhancer–promoter specificity in gene transcription: molecular mechanisms and disease associations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although often located at a distance from their target gene promoters, enhancers are the primary genomic determinants of temporal and spatial transcriptional specificity in metazoans. Since the discovery of the first enhancer element in simian virus 40, there has been substantial interest in unraveling the mechanism(s) by which enhancers communicate with their partner promoters to ensure proper gene expression. These research efforts have benefited considerably from the application of increasingly sophisticated sequencing- and imaging-based approaches in conjunction with innovative (epi)genome-editing technologies; however, despite various proposed models, the principles of enhancer–promoter interaction have still not been fully elucidated. In this review, we provide an overview of recent progress in the eukaryotic gene transcription field pertaining to enhancer–promoter specificity. A better understanding of the mechanistic basis of lineage- and context-dependent enhancer–promoter engagement, along with the continued identification of functional enhancers, will provide key insights into the spatiotemporal control of gene expression that can reveal therapeutic opportunities for a range of enhancer-related diseases.

          Enhancers in focus: insights into spatiotemporal gene expression control

          This review summarizes the current understanding of enhancer-promoter interactions (EPIs), a key feature of genome structure, in gene regulation and disease. EPIs are crucial for proper gene activity, and their alteration by mutational events can be pathological, causing, among others, cancer, and neurodevelopmental disorders. The authors provide an overview of various methods used to study 3D genome architecture (the physical structure of chromosomes) and discuss recent insights that these techniques have afforded, especially with regard to the specificity and dynamics of EPIs as well as the underlying molecular mechanisms. The review highlights the broad experimental utility of CRISPR-based strategies and their therapeutic potential for targeting disease-related EPIs. While substantial progress has been made, further elucidation of the physical and functional interplay of enhancers with their cognate promoter(s) will reveal new treatment opportunities for many diseases.

          This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.

          Related collections

          Most cited references192

          • Record: found
          • Abstract: found
          • Article: not found

          A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.

          We use in situ Hi-C to probe the 3D architecture of genomes, constructing haploid and diploid maps of nine cell types. The densest, in human lymphoblastoid cells, contains 4.9 billion contacts, achieving 1 kb resolution. We find that genomes are partitioned into contact domains (median length, 185 kb), which are associated with distinct patterns of histone marks and segregate into six subcompartments. We identify ∼10,000 loops. These loops frequently link promoters and enhancers, correlate with gene activation, and show conservation across cell types and species. Loop anchors typically occur at domain boundaries and bind CTCF. CTCF sites at loop anchors occur predominantly (>90%) in a convergent orientation, with the asymmetric motifs "facing" one another. The inactive X chromosome splits into two massive domains and contains large loops anchored at CTCF-binding repeats. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The GTEx Consortium atlas of genetic regulatory effects across human tissues

            (2020)
            The Genotype-Tissue Expression (GTEx) project was established to characterize genetic effects on the transcriptome across human tissues and to link these regulatory mechanisms to trait and disease associations. Here, we present analyses of the version 8 data, examining 15,201 RNA-sequencing samples from 49 tissues of 838 postmortem donors. We comprehensively characterize genetic associations for gene expression and splicing in cis and trans, showing that regulatory associations are found for almost all genes, and describe the underlying molecular mechanisms and their contribution to allelic heterogeneity and pleiotropy of complex traits. Leveraging the large diversity of tissues, we provide insights into the tissue specificity of genetic effects and show that cell type composition is a key factor in understanding gene regulatory mechanisms in human tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.

              Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
                Bookmark

                Author and article information

                Contributors
                mrosenfeld@health.ucsd.edu
                soohwanoh@korea.ac.kr
                Journal
                Exp Mol Med
                Exp Mol Med
                Experimental & Molecular Medicine
                Nature Publishing Group UK (London )
                1226-3613
                2092-6413
                25 April 2024
                25 April 2024
                April 2024
                : 56
                : 4
                : 772-787
                Affiliations
                [1 ]GRID grid.266100.3, ISNI 0000 0001 2107 4242, Department and School of Medicine, , University of California, San Diego, ; La Jolla, CA USA
                [2 ]GRID grid.222754.4, ISNI 0000 0001 0840 2678, College of Pharmacy Korea University, ; 2511 Sejong-ro, Sejong, 30019 Republic of Korea
                Author information
                http://orcid.org/0000-0003-4860-034X
                Article
                1233
                10.1038/s12276-024-01233-y
                11058250
                38658702
                f854f605-3582-421b-8446-51c4b669ecce
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 November 2023
                : 28 February 2024
                : 5 March 2024
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003725, National Research Foundation of Korea (NRF);
                Award ID: 2023R1C1C1010699
                Award Recipient :
                Categories
                Review Article
                Custom metadata
                © Korean Society for Biochemical and Molecular Biology 2024

                Molecular medicine
                transcriptional regulatory elements,chromatin structure
                Molecular medicine
                transcriptional regulatory elements, chromatin structure

                Comments

                Comment on this article