14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Proton magnetic resonance spectroscopy of brain metabolic shifts induced by acute administration of 2-deoxy-d-glucose and lipopolysaccharides.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In vivo proton magnetic resonance spectroscopy ((1) H MRS) of outbred stock ICR male mice (originating from the Institute of Cancer Research) was used to study the brain (hippocampus) metabolic response to the pro-inflammatory stimulus and to the acute deficiency of the available energy, which was confirmed by measuring the maximum oxygen consumption. Inhibition of glycolysis by means of an injection with 2-deoxy-d-glucose (2DG) reduced the levels of gamma-aminobutyric acid (GABA, p < 0.05, in comparison with control, least significant difference (LSD) test), N-acetylaspartate (NAA, p < 0.05, LSD test) and choline compounds, and at the same time increased the levels of glutamate and glutamine. An opposite effect was found after injection with bacterial lipopolysaccharide (LPS) - a very common pro-inflammatory inducer. An increase in the amounts of GABA, NAA and choline compounds in the brain occurred in mice treated with LPS. Different metabolic responses to the energy deficiency and the pro-inflammatory stimuli can explain the contradictory results of the brain (1) H MRS studies under neurodegenerative pathology, which is accompanied by both mitochondrial dysfunction and inflammation. The prevalence of the excitatory metabolites such as glutamate and glutamine in 2DG treated mice is in good agreement with excitation observed during temporary reduction of the available energy under acute hypoxia or starvation. In turn, LPS, as an inducer of the sickness behavior, which was manifested as depression, sleepiness, loss of appetite etc., shifts the brain metabolic pattern toward the prevalence of the inhibitory neurotransmitter GABA.

          Related collections

          Author and article information

          Journal
          NMR Biomed
          NMR in biomedicine
          Wiley
          1099-1492
          0952-3480
          Apr 2014
          : 27
          : 4
          Affiliations
          [1 ] Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia.
          Article
          10.1002/nbm.3074
          24493094
          f83ed718-2aee-44dc-a9f3-c81fccc10d07
          History

          metabolites of the brain,neurodegenerative diseases,maximum oxygen consumption,magnetic resonance spectroscopy,lipopolysaccharide,2-deoxy-d-glucose

          Comments

          Comment on this article