16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synergistic Upregulation of Target Genes by TET1 and VP64 in the dCas9–SunTag Platform

      research-article
      , , , *
      International Journal of Molecular Sciences
      MDPI
      CRISPR/Cas9, dCas9, SunTag, Tet1, VP64

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Overexpression of a gene of interest is a general approach used in both basic research and therapeutic applications. However, the conventional approach involving overexpression of exogenous genes has difficulty achieving complete genome coverage, and is also limited by the cloning capacity of viral vectors. Therefore, an alternative approach would be to drive the expression of an endogenous gene using an artificial transcriptional activator. Fusion proteins of dCas9 and a transcription activation domain, such as dCas9–VP64, are widely used for activation of endogenous genes. However, when using a single sgRNA, the activation range is low. Consequently, tiling of several sgRNAs is required for robust transcriptional activation. Here we describe the screening of factors that exhibit the best synergistic activation of gene expression with TET1 in the dCas9–SunTag format. All seven factors examined showed some synergy with TET1. Among them, VP64 gave the best results. Thus, simultaneous tethering of VP64 and TET1 to a target gene using an optimized dCas9–SunTag format synergistically activates gene expression using a single sgRNA.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          A TALE nuclease architecture for efficient genome editing.

          Nucleases that cleave unique genomic sequences in living cells can be used for targeted gene editing and mutagenesis. Here we develop a strategy for generating such reagents based on transcription activator-like effector (TALE) proteins from Xanthomonas. We identify TALE truncation variants that efficiently cleave DNA when linked to the catalytic domain of FokI and use these nucleases to generate discrete edits or small deletions within endogenous human NTF3 and CCR5 genes at efficiencies of up to 25%. We further show that designed TALEs can regulate endogenous mammalian genes. These studies demonstrate the effective application of designed TALE transcription factors and nucleases for the targeted regulation and modification of endogenous genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CRISPR RNA-guided activation of endogenous human genes

            Catalytically inactive CRISPR-associated 9 nuclease (dCas9) can be directed by short guide RNAs (gRNAs) to repress endogenous genes in bacteria and human cells. Here we show that a dCas9-VP64 transcriptional activation domain fusion protein can be directed by single or multiple gRNAs to increase expression of specific endogenous human genes. These results provide an important proof-of-principle that CRISPR-Cas systems can be used to target heterologous effector domains in human cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Programmable Sequence-Specific Transcriptional Regulation of Mammalian Genome Using Designer TAL Effectors

              The ability to direct functional domains to specific DNA sequences is a long sought-after goal for studying and engineering biological processes. Transcription activator like effectors (TALEs) from Xanthomonas sp. present a promising platform for designing sequence-specific DNA binding proteins. Here we describe a robust and rapid method for overcoming the difficulty of constructing TALE repeat domains. We synthesized 17 designer TALEs (dTALEs) that are customized to recognize specific DNA binding sites, and demonstrate that dTALEs can specifically modulate transcription of endogenous genes (Sox2 and Klf4) from the native genome in human cells. dTALEs provide a designable DNA targeting platform for the interrogation and engineering of biological systems.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                25 February 2020
                March 2020
                : 21
                : 5
                : 1574
                Affiliations
                Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan; msumiyo@ 123456gunma-u.ac.jp (S.M.); horii@ 123456gunma-u.ac.jp (T.H.); mikimura@ 123456gunma-u.ac.jp (M.K.)
                Author notes
                [* ]Correspondence: hatada@ 123456gunma-u.ac.jp
                Article
                ijms-21-01574
                10.3390/ijms21051574
                7084704
                32106616
                f82dab71-fc1b-462c-8f2b-b45b77b75f38
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 January 2020
                : 24 February 2020
                Categories
                Communication

                Molecular biology
                crispr/cas9,dcas9,suntag,tet1,vp64
                Molecular biology
                crispr/cas9, dcas9, suntag, tet1, vp64

                Comments

                Comment on this article