There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Phthalates are used as plasticizers in PVC plastics. As the phthalate plasticizers are not chemically bound to PVC, they can leach, migrate or evaporate into indoor air and atmosphere, foodstuff, other materials, etc. Consumer products containing phthalates can result in human exposure through direct contact and use, indirectly through leaching into other products, or general environmental contamination. Humans are exposed through ingestion, inhalation, and dermal exposure during their whole lifetime, including intrauterine development. This paper presents an overview on current risk assessments done by expert panels as well as on exposure assessment data, based on ambient and on current human biomonitoring results. Some phthalates are reproductive and developmental toxicants in animals and suspected endocrine disruptors in humans. Exposure assessment via modelling ambient data give hints that the exposure of children to phthalates exceeds that in adults. Current human biomonitoring data prove that the tolerable intake of children is exceeded to a considerable degree, in some instances up to 20-fold. Very high exposures to phthalates can occur via medical treatment, i.e. via use of medical devices containing DEHP or medicaments containing DBP phthalate in their coating. Because of their chemical properties exposure to phthalates does not result in bioaccumulation. However, health concern is raised regarding the developmental and/or reproductive toxicity of phthalates, even in environmental concentrations.
Microplastics (MP) pollution has received increased attention over the last few years. However, while the number of studies documentating the ingestion of microplastics by fish has increased, fewer studies have addressed the toxicological effects derived from the ingestion of these small items in wild conditions. Here, MP contamination and effect biomarkers were investigated in three commercially important fish species from the North East Atlantic Ocean. From the 150 analysed fish (50 per species), 49 % had MP. In fish from the 3 species, MP in the gastrointestinal tract, gills and dorsal muscle were found. Fish with MP had significantly (p ≤ 0.05) higher lipid peroxidation levels in the brain, gills and dorsal muscle, and increased brain acetylcholinesterase activity than fish where no MP were found. These results suggest lipid oxidative damage in gills and muscle, and neurotoxicity through lipid oxidative damage and acetylcholinesterase induction in relation to MP and/or MP-associated chemicals exposure. From the 150 fish analysed, 32 % had MP in dorsal muscle, with a total mean (± SD) of 0.054 ± 0.099 MP items/g. Based on this mean and on EFSA recommendation for fish consumption by adults or the general population, human consumers of Dicentrachus labrax, Trachurus trachurus, Scomber colias may intake 842 MP items/year from fish consumption only. Based on the mean of MP in fish muscle and data (EUMOFA, NOAA) of fish consumption per capita in selected European and American countries, the estimated intake of microplastics through fish consumption ranged from 518 to 3078 MP items/year/capita. Considering that fish consumption is only one of the routes of human exposure to microplastics, this study and others in the literature emphasize the need for more research, risk assessment and adoption of measures to minimize human exposure to these particles. Thus, MP pollution and its effects should be further investigated and addressed according to the WHO 'One Health' approach.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.